Semiconductor electrocatalysis with weak conductivity can accumulate extremely high carriers at semiconductor-electrolyte interface by self-gating effect,which strongly promotes electrocatalytic efficiency.The correla...Semiconductor electrocatalysis with weak conductivity can accumulate extremely high carriers at semiconductor-electrolyte interface by self-gating effect,which strongly promotes electrocatalytic efficiency.The correlation between semiconductor carrier mobility and electrocatalysis performance is still unclear.Herein atomic-thin transition metal dichalcogenides based composites have been developed for hydrogen evolution reaction(HER)performed with on-chip microdevices.Electrical and electrochemical measurement of individual flack verified the key role of high carrier mobility for enhanced HER activity.Carrier mobility regulation further demonstrated its high dependence with HER performance under self-gating.Our study provides new insight into the carrier mobility of the semiconductor in the electrocatalysis,paving the way for designing high-performance semiconductor catalysts.展开更多
Occupational health management of liquid chemical transport wharf is still in its infancy,to grasp the occupational health status of employees in the industry and improve the occupational health management level of em...Occupational health management of liquid chemical transport wharf is still in its infancy,to grasp the occupational health status of employees in the industry and improve the occupational health management level of employees,taking the liquid chemical transport wharf of an enterprise as the investigation object,according to the relevant domestic occupations.Hygiene standards,using the combination of on-site occupational hygiene survey and workplace occupational hazard factors detection,identify the occupational hazard factors of the wharf and detect the degree of hazard.The survey results show that the overall occupational health of the wharf is basically good,but the noise index is slightly exceeded.It is suggested to further improve the occupational health management level of the wharf by improving the protection technology and strengthening the administrative management.展开更多
The accumulation of soil organic matter and nutrients is an important pathway in effectivelyunderstanding the mechanisms of plant settlement and rock weathering, while the characteristics ofsoil organic carbon (C), ni...The accumulation of soil organic matter and nutrients is an important pathway in effectivelyunderstanding the mechanisms of plant settlement and rock weathering, while the characteristics ofsoil organic carbon (C), nitrogen (N) and phosphorus (P) under different vegetation remain unclear.In this study, the stocks and stoichiometry of soil organic C, N and P were determined in differentpositions and types of vegetation on the surface of the Leshan Giant Buddha. We found that the totalstocks of soil organic C, N and P were 1689.77, 134.6 and 29.48 kg, respectively, for the Buddha.The stocks of soil organic C, N and P under vascular plants were higher than those under othervegetation, with highest values observed under herb. Higher stocks per unit area (m2) of soil organicC, N and P were found on the left and right arms, shoulders, and two platforms. These results providea full primary picture in understanding soil organic C, N and P accumulation and distribution on thesurface of the Buddha, which could supply the fundamental data on weathering management of theBuddha and other similar open-air stone carvings.展开更多
基金the National Natural Science Foundation of China(No.22175060,21975067)the National Basic Research Programs of China(No.2016YFA0300901)+4 种基金the National Science Foundation of China(No.11974105)the support from the U.S.National Science Foundation CREST Program(NSF No.HRD-1547723)the National Natural Science Foundation of China(No.51902346)Natural Science Foundation of China(No.21805077)the Natural Science Foundation of Hunan Province(No.2019JJ50075)。
文摘Semiconductor electrocatalysis with weak conductivity can accumulate extremely high carriers at semiconductor-electrolyte interface by self-gating effect,which strongly promotes electrocatalytic efficiency.The correlation between semiconductor carrier mobility and electrocatalysis performance is still unclear.Herein atomic-thin transition metal dichalcogenides based composites have been developed for hydrogen evolution reaction(HER)performed with on-chip microdevices.Electrical and electrochemical measurement of individual flack verified the key role of high carrier mobility for enhanced HER activity.Carrier mobility regulation further demonstrated its high dependence with HER performance under self-gating.Our study provides new insight into the carrier mobility of the semiconductor in the electrocatalysis,paving the way for designing high-performance semiconductor catalysts.
文摘Occupational health management of liquid chemical transport wharf is still in its infancy,to grasp the occupational health status of employees in the industry and improve the occupational health management level of employees,taking the liquid chemical transport wharf of an enterprise as the investigation object,according to the relevant domestic occupations.Hygiene standards,using the combination of on-site occupational hygiene survey and workplace occupational hazard factors detection,identify the occupational hazard factors of the wharf and detect the degree of hazard.The survey results show that the overall occupational health of the wharf is basically good,but the noise index is slightly exceeded.It is suggested to further improve the occupational health management level of the wharf by improving the protection technology and strengthening the administrative management.
基金This work was partially supported by the National Natural Science Foundation of China(31470636).
文摘The accumulation of soil organic matter and nutrients is an important pathway in effectivelyunderstanding the mechanisms of plant settlement and rock weathering, while the characteristics ofsoil organic carbon (C), nitrogen (N) and phosphorus (P) under different vegetation remain unclear.In this study, the stocks and stoichiometry of soil organic C, N and P were determined in differentpositions and types of vegetation on the surface of the Leshan Giant Buddha. We found that the totalstocks of soil organic C, N and P were 1689.77, 134.6 and 29.48 kg, respectively, for the Buddha.The stocks of soil organic C, N and P under vascular plants were higher than those under othervegetation, with highest values observed under herb. Higher stocks per unit area (m2) of soil organicC, N and P were found on the left and right arms, shoulders, and two platforms. These results providea full primary picture in understanding soil organic C, N and P accumulation and distribution on thesurface of the Buddha, which could supply the fundamental data on weathering management of theBuddha and other similar open-air stone carvings.