Thickness of the intermetallic compounds(IMC)layer at the interface has a significant effect on the mechanical properties of Mg/Al dissimilar joints.However,the thickness of IMC layer can be only obtained by metallurg...Thickness of the intermetallic compounds(IMC)layer at the interface has a significant effect on the mechanical properties of Mg/Al dissimilar joints.However,the thickness of IMC layer can be only obtained by metallurgical microscopy,which is destructive and has to break down the weld.Therefore,it is crucial to find a reliable approach that can non-destructively predict the thickness of IMC layer in practical application.In the current study,Mg alloy and Al alloy were friction stir butt welded(FSW)under different tool rotation speeds(TRS)to obtain different thicknesses of IMC layers.As the TRS increased from 400 rpm to 1000 rpm,thickness of the IMC layer increased from 0.4μm to 1.3μm,the peak welding temperatures increased from 259℃to 402℃,and the Z-axis downforces decreased from10.5 kN to 3.2 k N during welding process.Higher TRS would generally induce higher welding heat input,which promotes the growth of the IMC layer and the softening of base materials.The IMC layer formed through solid-state diffusion and transformation instead of eutectic reaction according to the welding temperature history and interfacial microstructure,and its evolution process was clearly observed by plan view.In order to incorporate the effect of dramatic change of welding temperature which is the characteristic feature of FSW,Psd Voigt function was used to fit the welding temperature histories.A new prediction formula was then established to predict thicknesses of IMC layers with considering sharp welding temperature change.Predicted thicknesses gave good agreement with measured thicknesses obtained experimentally under different welding parameters,which confirmed the accuracy and reliability of the new prediction formula.Based on this prediction formula,the time period of temperature higher than 200℃during welding was found critical for the thickening of interfacial IMC layers.展开更多
The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inhe...The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inherent limitation of high density of empty valence band significantly reduces its catalytic reactivity by reason of strong hydrogen desorption resistance.Herein,we propose a multiscale confinement synthesis method to design the nitrogen-rich Mo_(2)C for modulating the band structure via decomposing the pre-coordination bonded polymer in a pressure-tight tube sealing system.Pre-bonded c/N-Mo in the coordination precursor constructs a micro-confinement space,enabling the homogeneous nitrogenization in-situ happened during the formation of Mo_(2)C.Simultaneously,the evolved gases from the precursor decomposition in tube sealing system establish a macro-confinement environment,preventing the lattice N escape and further endowing a continuous nitridation.Combining the multiscale confinement effects,the nitrogen-rich Mo2C displays as high as 25%N-Mo concentration in carbide lattice,leading to a satisfactory band structure.Accordingly,the constructed nitrogen-rich Mo_(2)C reveals an adorable catalytic activity for HER in both alkaline and acid solution.It is anticipated that the multiscale confinement synthesis strategy presents guideline for the rational design of electrocatalysts and beyond.展开更多
基金supported by the National Natural Science Foundation of China(No.52075330)the Interdisciplinary Program of Shanghai Jiao Tong University(No.YG2019QNA15)the Foundation of National Facility for Translational Medicine(Shanghai)(No.TMSK-2020-107)。
文摘Thickness of the intermetallic compounds(IMC)layer at the interface has a significant effect on the mechanical properties of Mg/Al dissimilar joints.However,the thickness of IMC layer can be only obtained by metallurgical microscopy,which is destructive and has to break down the weld.Therefore,it is crucial to find a reliable approach that can non-destructively predict the thickness of IMC layer in practical application.In the current study,Mg alloy and Al alloy were friction stir butt welded(FSW)under different tool rotation speeds(TRS)to obtain different thicknesses of IMC layers.As the TRS increased from 400 rpm to 1000 rpm,thickness of the IMC layer increased from 0.4μm to 1.3μm,the peak welding temperatures increased from 259℃to 402℃,and the Z-axis downforces decreased from10.5 kN to 3.2 k N during welding process.Higher TRS would generally induce higher welding heat input,which promotes the growth of the IMC layer and the softening of base materials.The IMC layer formed through solid-state diffusion and transformation instead of eutectic reaction according to the welding temperature history and interfacial microstructure,and its evolution process was clearly observed by plan view.In order to incorporate the effect of dramatic change of welding temperature which is the characteristic feature of FSW,Psd Voigt function was used to fit the welding temperature histories.A new prediction formula was then established to predict thicknesses of IMC layers with considering sharp welding temperature change.Predicted thicknesses gave good agreement with measured thicknesses obtained experimentally under different welding parameters,which confirmed the accuracy and reliability of the new prediction formula.Based on this prediction formula,the time period of temperature higher than 200℃during welding was found critical for the thickening of interfacial IMC layers.
基金supported by the National Natural Science Foundation of China(52372201,52125202,52202247)the Natural Science Foundation of Jiangsu Province(1192261031693)the Fundamental Research Funds for the Central Universities(30919011110,1191030558)。
文摘The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inherent limitation of high density of empty valence band significantly reduces its catalytic reactivity by reason of strong hydrogen desorption resistance.Herein,we propose a multiscale confinement synthesis method to design the nitrogen-rich Mo_(2)C for modulating the band structure via decomposing the pre-coordination bonded polymer in a pressure-tight tube sealing system.Pre-bonded c/N-Mo in the coordination precursor constructs a micro-confinement space,enabling the homogeneous nitrogenization in-situ happened during the formation of Mo_(2)C.Simultaneously,the evolved gases from the precursor decomposition in tube sealing system establish a macro-confinement environment,preventing the lattice N escape and further endowing a continuous nitridation.Combining the multiscale confinement effects,the nitrogen-rich Mo2C displays as high as 25%N-Mo concentration in carbide lattice,leading to a satisfactory band structure.Accordingly,the constructed nitrogen-rich Mo_(2)C reveals an adorable catalytic activity for HER in both alkaline and acid solution.It is anticipated that the multiscale confinement synthesis strategy presents guideline for the rational design of electrocatalysts and beyond.