期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Surface-to-bulk engineering with high-valence W^(6+) enabling stabilized single-crystal LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2) cathode 被引量:1
1
作者 Jun-Ke Liu xue-rui yang +6 位作者 Chuan-Wei Wang Zu-Wei Yin Yi-yang Hu Li Deng Zhen Wang Yao Zhou Jun-Tao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期67-76,共10页
Single-crystal Nickel-rich layered oxides has been recognized as one of the promising cathodes for nextgeneration lithium batteries on account of their high capacity,while its practical application was hindered by str... Single-crystal Nickel-rich layered oxides has been recognized as one of the promising cathodes for nextgeneration lithium batteries on account of their high capacity,while its practical application was hindered by structural instability and slow Li^(+) transfer kinetics.Herein,a surface-to-bulk engineered single-crystal LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)(Ni90) cathode,which features W-doped bulk and Li_(2)WO_(4) surface layer,was successfully achieved by a one-step high-valence W^(6+) modification.The as-obtained W-modified Ni90 delivers excellent cycling stability(89.8% capacity retention after 300 cycles at 0.5 C)and rate capability.The enhanced electrochemical performance was ascribed to the doped-W induced stabilized lattice oxygen,reduced Li^(+)/Ni^(2+) mixing and inhibited H2-H3 phase transition in the bulk,and Li_(2)WO_(4) layer generated stabilized cathode/electrolyte interface.In addition,the thinner LiF-rich cathode electrolyte interphase(CEI) on surface and smaller grain size for W-modified Ni90 benefit to its Li^(+) diffusion dynamics.The effect of high-valence W^(6+)on single-crystal Ni-rich cathode was firstly revealed in detail,which deepens the understanding of electrochemical behavior of Ni-rich cathode with high-valence cations modification,and provides clues for design of high-performance layered cathodes. 展开更多
关键词 Single-crystal Ni-rich cathode Surface-to-bulk engineering High-valence cations Structural stability Interfacial side reaction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部