Recombinant tissue plasminogen activator is commonly used for hematoma evacuation in minimally invasive surgery following intracerebral hemorrhage.However,during minimally invasive surgery,recombinant tissue plasminog...Recombinant tissue plasminogen activator is commonly used for hematoma evacuation in minimally invasive surgery following intracerebral hemorrhage.However,during minimally invasive surgery,recombinant tissue plasminogen activator may come into contact with brain tissue.Therefore,a thorough assessment of its safety is required.In this study,we established a mouse model of intracerebral hemorrhage induced by type VII collagenase.We observed that the administration of recombinant tissue plasminogen activator without hematoma aspiration significantly improved the neurological function of mice with intracerebral hemorrhage,reduced pathological damage,and lowered the levels of apoptosis and autophagy in the tissue surrounding the hematoma.In an in vitro model of intracerebral hemorrhage using primary cortical neurons induced by hemin,the administration of recombinant tissue plasminogen activator suppressed neuronal apoptosis,autophagy,and endoplasmic reticulum stress.Transcriptome sequencing analysis revealed that recombinant tissue plasminogen activator upregulated the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway in neurons.Moreover,the phosphoinositide 3-kinase inhibitor LY294002 abrogated the neuroprotective effects of recombinant tissue plasminogen activator in inhibiting excessive apoptosis,autophagy,and endoplasmic reticulum stress.Furthermore,to specify the domain of recombinant tissue plasminogen activator responsible for its neuroprotective effects,various inhibitors were used to target distinct domains.It has been revealed that the epidermal growth factor receptor inhibitor AG-1478 reversed the effect of recombinant tissue plasminogen activator on the phosphoinositide 3-kinase/RAC-alpha serine/threonineprotein kinase/mammalian target of rapamycin pathway.These findings suggest that recombinant tissue plasminogen activator exerts a direct neuroprotective effect on neurons following intracerebral hemorrhage,possibly through activation of the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway.展开更多
Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without ...Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without the dependence of antibiotic.Methods:Herein,we prepared ultrasound/magnetic field-responsive ferroferric oxide nanoparticles(Fe_(3)O_(4))/glucose oxidase microbubbles(FGMB)to form a cascade catalytic system for effective removing methicillin-resistant Staphylococcus aureus biofilms.FGMB were prepared through interfacial self-assembly of Fe_(3)O_(4) nanoparticles(NPs)and glucose oxidase(GOx)at the gas-liquid interface stabilized by surfactants.Under ultrasound/magnetic field stimulation,FGMB disrupted biofilm architecture through microbubble collapse-induced microjets and magnetically driven displacement.Simultaneously,ultrasound-triggered rupture of FGMB released GOx and Fe_(3)O_(4) NPs.Glucose can be oxidized by GOx to generate gluconic acid and hydrogen peroxide which was subsequently catalyzed into hydroxyl radicals by Fe_(3)O_(4) NPs,enabling chemical eradication of biofilm-embedded bacteria.Results:Optical microscopy images demonstrated that FGMB have spherical structure with average size of approximately 17μm.FGMB showed a 65.4%decrease in methicillin-resistant Staphylococcus aureus biofilm biomass and 1.1 log bacterial inactivation efficiency(91.2%),suggesting effective biofilm elimination.In vitro experimental results also indicate that FGMB have good biocompatibility.Conclusion:This antibiofilm strategy integrated dual modes of physical biofilm disruption with chemical bacteria-killing shows great potential as a versatile,non-resistant strategy for bacterial biofilm elimination.展开更多
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modu...Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as ‘cell polarization.’ There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations(microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.展开更多
The development of multi-stimuli-responsive luminescent system to address emerging demands is essential in anti-counterfeiting field.Herein,a photoswitchable system was reported,which was constructed from photoacid su...The development of multi-stimuli-responsive luminescent system to address emerging demands is essential in anti-counterfeiting field.Herein,a photoswitchable system was reported,which was constructed from photoacid sulfonato-merocyanine(MEH-D)serving as H+donor and diarylethene derivative(DAEA1)as acceptor.After capturing 2 equiv.HCl,the obtained fluorescent molecule DAE-A1-H showed solvatochromic property.Further on,benefiting from that MEH-D released protons and became a ring-closed isomer spiropyran(SP-D)under 440 nm irradiation,DAE-A1 was protonated,turning on fluorescence effect was realized in DAE-A1/MEH-D.In dark,a photo-activated reversible process was realized with SPD changed to MEH-D in situ system.In addition,the OF-DAE-A1-H/SP-D could efficiently and reversibly switch on/off its luminescence upon irradiation by UV–vis light.Significantly,the multi-stimuli-responsive system was successfully applied in logic gate and fluorescence ink,making it an efficient strategy for information encryption and decryption with higher security requirements.展开更多
Chirality,ubiquitous in living matter,plays vital roles in a series of physiological processes.The clarification of the multiple functions of chirality in bioapplications may provide innovative methodologies for engin...Chirality,ubiquitous in living matter,plays vital roles in a series of physiological processes.The clarification of the multiple functions of chirality in bioapplications may provide innovative methodologies for engineering anti-tumor agents.Nevertheless,the related research has been rarely explored.In this study,the chiral supramolecular l/d-cysteine(Cys)-Zn^(2+)-indocyanine green(ICG)nanoparticles were constructed through the coordination interaction between l/d-Cys and Zn^(2+),followed by the encapsulation of ICG.Experimental findings revealed that the d-Cys-Zn^(2+)-ICG exhibited 17.31 times higher binding affinity toward phospholipid-composed liposomes compared to l-Cys-Zn^(2+)-ICG.Furthermore,driven by chiralityspecific interaction,a 2.07 folds greater cellular internalization of d-Cys-Zn^(2+)-ICG than l-Cys-Zn^(2+)-ICG was demonstrated.Additionally,the triple-level chirality-dependent photothermal,photodynamic and Zn^(2+)releasing anti-tumor effects of l/d Cys-Zn^(2+)-ICG in vitro were verified.As a result,the d-formed nanoparticles achieved 1.93 times higher anti-tumor efficiency than the l-formed ones.The triple-level chirality-mediated anti-tumor effect highlighted in this study underscores the enormous potential of chirality in biomedicine and holds substantial significance in improving cancer therapeutic efficacy.展开更多
Electron-positron colliders operating in the GeV center-of-mass range,or tau-charm energy region,have been proved to enable competitive frontier research due to several unique features.With the progress of high-energy...Electron-positron colliders operating in the GeV center-of-mass range,or tau-charm energy region,have been proved to enable competitive frontier research due to several unique features.With the progress of high-energy physics in the last two decades,a new-generation Tau-Charm factory,called the Super Tau-Charm Facility(STCF),has been actively promoted by the particle physics community in China.STCF has the potential to address fundamental questions such as the essence of color confinement and the matter-antimatter asymmetry within the next decades.The main design goals of the STCF are a center-of-mass energy ranging from 2 to 7 GeV and a luminosity surpassing 5×10^(34)cm^(−2)s^(−1)that is optimized at a center-of-mass energy of 4 GeV,which is approximately 50 times that of the currently operating Tau-Charm factory-BEPCII.The STCF accelerator has two main parts:a double-ring collider with a crab-waist collision scheme and an injector that provides top-up injections for both electron and positron beams.As a typical third-generation electron-positron circular collider,the STCF accelerator faces many challenges in both accelerator physics and technology.In this paper,the conceptual design of the STCF accelerator complex is presented,including the ongoing efforts and plans for technological research and develop-ment,as well as the required infrastructure.The STCF project aims to secure support from the Chinese central government for its construction during the 15th Five-Year Plan(2026-2030).展开更多
With the growth of the Internet of Things(IoT)comes a flood of malicious traffic in the IoT,intensifying the challenges of network security.Traditional models operate with independent layers,limiting their effectivene...With the growth of the Internet of Things(IoT)comes a flood of malicious traffic in the IoT,intensifying the challenges of network security.Traditional models operate with independent layers,limiting their effectiveness in addressing these challenges.To address this issue,we propose a cross-layer cooperative Feature Subset-Based Malicious Traffic Detection(FSMMTD)model for detecting malicious traffic.Our approach begins by applying an enhanced random forest method to adaptively filter and retain highly discriminative first-layer features.These processed features are then input into an improved state-space model that integrates the strengths of recurrent neural networks(RNNs)and transformers,enabling superior processing of complex patterns and global information.This integration allows the FSMMTD model to enhance its capability in identifying intricate data relationships and capturing comprehensive contextual insights.The FSMMTD model monitors IoT data flows in real-time,efficiently detecting anomalies and enabling rapid response to potential intrusions.We validate our approach using the publicly available ToN_IoT dataset for IoT traffic analysis.Experimental results demonstrate that our method achieves superior performance with an accuracy of 98.37%,precision of 96.28%,recall of 95.36%,and F1-score of 96.79%.These metrics indicate that the FSMMTD model outperforms existing methods in detecting malicious traffic,showcasing its effectiveness and reliability in enhancing IoT network security.展开更多
Back-streaming neutrons from the spallation target of the China Spallation Neutron Source(CSNS)that emit through the incoming proton channel were exploited to build a white neutron beam facility(the so-called Back-n w...Back-streaming neutrons from the spallation target of the China Spallation Neutron Source(CSNS)that emit through the incoming proton channel were exploited to build a white neutron beam facility(the so-called Back-n white neutron source),which was completed in March 2018.The Back-n neutron beam is very intense,at approximately 29107 n/cm2/s at 55 m from the target,and has a nominal proton beam with a power of 100 kW in the CSNS-I phase and a kinetic energy of 1.6 GeV and a thick tungsten target in multiple slices with modest moderation from the cooling water through the slices.In addition,the excellent energy spectrum spanning from 0.5 eV to 200 MeV,and a good time resolution related tothe time-of-flight measurements make it a typical white neutron source for nuclear data measurements;its overall performance is among that of the best white neutron sources in the world.Equipped with advanced spectrometers,detectors,and application utilities,the Back-n facility can serve wide applications,with a focus on neutron-induced cross-sectional measurements.This article presents an overview of the neutron beam characteristics,the experimental setups,and the ongoing applications at Backn.展开更多
Intergranular corrosion(IGC) behavior of the stabilized ultra-pure 430 LX ferritic stainless steel(FSS) was investigated by using double loop electrochemical potentiokinetic reactivation(DL-EPR) and oxalic acid etch t...Intergranular corrosion(IGC) behavior of the stabilized ultra-pure 430 LX ferritic stainless steel(FSS) was investigated by using double loop electrochemical potentiokinetic reactivation(DL-EPR) and oxalic acid etch tests to measure the susceptibility of specimens given a two-step heat treatment. The results reveal that IGC occurs in the specimens aged at the temperature range of 600–750℃ for a short time. The aging time that is required to cause IGC decreases with the increase of aging temperature. A longer aging treatment can reduce the susceptibility to IGC. The microstructural observation shows that M(23)C6 precipitates form along the grain boundaries, leading to the formation of Cr-depleted zones. The presence of Cr-depleted zones results in the susceptibility to IGC. However, the atoms of stabilizing elements replace chromium atoms to form MC precipitates after long-time aging treatment, resulting in the chromium replenishment of Cr-depleted zones and the reduction of the susceptibility to IGC.展开更多
To verify the performance of the neutron total cross-sectional spectrometer, the neutron total cross section of carbon is initially measured in the energy range of 1 eV to 20 MeV using the time-of-flight method. The m...To verify the performance of the neutron total cross-sectional spectrometer, the neutron total cross section of carbon is initially measured in the energy range of 1 eV to 20 MeV using the time-of-flight method. The measurement is performed at the Back-n white neutron source with a 76-m time-of-flight path using the China Spallation Neutron Source. A multilayer fast fission chamber with 235U and 238U is employed as the neutron detector. The diameter and thickness of the natural graphite sample are 70 mm and 40 mm, respectively. Signal waveforms are collected using a data acquisition system. Off-line data processing was used to obtain the neutron time-of-flight spectra and transmissions. The uncertainty of the counting statistics is generally approximately 3% for each bin in the energy range of 1–20 MeV. It is determined that the results for the neutron total cross section of carbon obtained using ^235U cells are in good agreement with the results obtained using 238U cells within limits of statistical uncertainty. Moreover, the measured total cross sections show good agreement with the broadening evaluated data.展开更多
Both platinum-based doublet chemotherapy(PBC) and epidermal growth factor receptor tyrosine kinase inhibitors(EGFR-TKIs) prolong the survival of patients with advanced non-small cell lung cancer(NSCLC). In early studi...Both platinum-based doublet chemotherapy(PBC) and epidermal growth factor receptor tyrosine kinase inhibitors(EGFR-TKIs) prolong the survival of patients with advanced non-small cell lung cancer(NSCLC). In early studies, most patients underwent PBC as first-line treatment, but not all patients could afford EGFR-TKIs as second-line treatment. To understand the impact of PBC and EGFR-TKIs on NSCLC prognosis, we evaluated the association between the receipt of both regimens and overall survival(OS). Using MEDLINE and EMBASE, we identified prospective, randomized, controlled phase III clinical trials in advanced NSCLC that met the inclusion criteria: in general population with advanced NSCLC, the percentage of patients treated with both PBC and EGFR-TKIs was available in the trial and OS was reported. After collecting data from the selected trials, we correlated the percentage of patients treated with both PBC and EGFR-TKIs with the reported OS, using a weighted analysis. Fifteen phase III clinical trials—involving 11,456 adult patients in 32 arms—were included in the analysis, including 6 trials in Asian populations and 9 in non-Asian(predominantly Caucasian) populations. The OS was positively correlated with the percentage of patients treated with both PBC and EGFR-TKIs(r = 0.797, P < 0.001). The correlation was obvious in the trials in Asian populations(r = 0.936, P < 0.001) but was not statistically significant in the trials in predominantly Caucasian populations(r = 0.116, P = 0.588). These results suggest that treatment with PBC and EGFR-TKIs may provide a survival benefit to patients with advanced NSCLC, highlighting the importance of having both modalities available for therapy.展开更多
Background: The TNM staging system is far from perfect in predicting the survival of individual cancer patients because only the gross anatomy is considered. The survival rates of the patients who have the same TNM st...Background: The TNM staging system is far from perfect in predicting the survival of individual cancer patients because only the gross anatomy is considered. The survival rates of the patients who have the same TNM stage disease vary across a wide spectrum. This study aimed to develop a nomogram that incorporates other clinicopathologic factors for predicting the overall survival(OS) of non-metastatic nasopharyngeal carcinoma(NPC) patients after curative treatments.Methods: We retrospectively collected the clinical data of 1520 NPC patients who were diagnosed histologically between November 2000 and September 2003. The clinical data of a separate cohort of 464 patients who received intensity-modulated radiation therapy(IMRT) between 2001 and 2010 were also retrieved to examine the extensibility of the model. Cox regression analysis was used to identify the prognostic factors for building the nomogram. The predictive accuracy and discriminative ability were measured using the concordance index(c-index).Results: We identiied and incorporated 12 independent clinical factors into the nomogram. The calibration curves showed that the prediction of OS was in good agreement with the actual observation in the internal validation set and IMRT cohort. The c-index of the nomogram was statistically higher than that of the 7th edition TNM staging system for predicting the survival in both the primary cohort(0.69 vs. 0.62) and the IMRT cohort(0.67 vs. 0.63).Conclusion: We developed and validated a novel nomogram that outperformed the TNM staging system in predicting the OS of non-metastatic NPC patients who underwent curative therapy.展开更多
The ^(232)Th(n,f)cross section is very important in basic nuclear physics and applications based on the Th/U fuel cycle.Using the time-of-flight method and a multi-cell fast-fission ionization chamber,a novel measurem...The ^(232)Th(n,f)cross section is very important in basic nuclear physics and applications based on the Th/U fuel cycle.Using the time-of-flight method and a multi-cell fast-fission ionization chamber,a novel measurement of the^(232)Th(n,f)cross sec-tion relative to^(235)U in the 1–200 MeV range was performed at the China Spallation Neutron Source Back-n white neutron source(Back-n).The fission event-neutron energy spectra of^(232)Th and^(235)U fission cells were measured in the single-bunch mode.Corrected 232Th/235U fission cross-sectional ratios were obtained,and the measurement uncertainties were 2.5–3.7%for energies in the 2–20 MeV range and 3.6–6.2%for energies in the 20–200 MeV range.The^(232)Th(n,f)cross section was obtained by introducing the standard cross section of^(235)U(n,f).The results were compared with those of previous theoreti-cal calculations,measurements,and evaluations.The measured 232Th fission cross section agreed with the main evaluation results in terms of the experimental uncertainty,and 232Th fission resonances were observed in the 1–3 MeV range.The present results provide^(232)Th(n,f)cross-sectional data for the evaluation and design of Th/U cycle nuclear systems.展开更多
Latest Permian to Triassic plutons are widespread in the northern North China Craton(NCC); most of them show calc-alkaline, high-K calc-alkaline, or alkaline geochemical features. The Shadegai pluton in the Wulashan a...Latest Permian to Triassic plutons are widespread in the northern North China Craton(NCC); most of them show calc-alkaline, high-K calc-alkaline, or alkaline geochemical features. The Shadegai pluton in the Wulashan area has shoshonitic affinity and I-type character, and is composed of syenogranites containing abundant mafic microgranular enclaves(MMEs). LA-MC-ICP-MS U-Pb data yield weighted mean 206 Pb/238 U ages of 222 ± 1 Ma and 221 ± 1 Ma for the syenogranites and MMEs, respectively, suggesting their coeval formation during the Late Triassic. The syenogranites have high SiO_2(70.42-72.30 wt%),K_2O(4.58-5.22 wt.%) and Na_2O(4.19-4.43 wt.%) contents but lower concentrations of P_2O_5(0.073-0.096 wt.%) and TiO_2(0.27-0.37 wt.%), and are categorized as I-type granites, rather than A-type granites, as previously thought. These syenogranites exhibit lower(^(87)Sr/^(86)Sr)i ratios(0.70532-0.70547) and strongly negative whole-rock εNd(t) values(-12.54 to-11.86) and zircon εHf(t) values(-17.81 to-10.77),as well as old Nd(1962-2017 Ma) and Hf(2023-2092 Ma) model ages, indicating that they were derived from the lower crust.Field and petrological observations reveal that the MMEs within the pluton probably represent magmatic globules commingled with their host magmas. Geochemically, these MMEs have low SiO_2(53.46-55.91 wt.%)but high FeOt(7.27-8.79 wt.%) contents. They are enriched in light rare earth elements(LREEs) and large ion lithophile elements(LILEs), and are depleted in heavy rare earth elements(HREEs) and high field strength elements(HFSEs). They have whole-rock(^(87)Sr/^(86)Sr)i ratios varying from 0.70551 to 0.70564, εNd(t) values of -10.63 to -9.82, and zircon εHf(t) values of -9.89 to 0.19. Their geochemical and isotopic features indicate that they were derived from the subcontinental lithospheric mantle mainly metasomatized by slab-derived fluids, with minor involvement of melts generated from the ascending asthenospheric mantle. Petrology integrated with elemental and isotopic geochemistry suggest that the Shadegai pluton was produced by crust-mantle interactions, i.e., partial melting of the lower continental crust induced by underplating of mantle-derived mafic magmas(including the subcontinental lithospheric mantle and asthenospheric mantle), and subsequent mixing of the mantle-and crust-derived magmas. In combination with existing geological data, it is inferred that the Shadegai pluton formed in a post-collisional extensional regime related to lithospheric delamination following the collision between the NCC and Mongolia arc terranes.展开更多
Ischemic stroke is one of the most common causes of mortality and disability worldwide.However,treatment efficacy and the progress of research remain unsatisfactory.As the critical support system and essential compone...Ischemic stroke is one of the most common causes of mortality and disability worldwide.However,treatment efficacy and the progress of research remain unsatisfactory.As the critical support system and essential components in neurovascular units,glial cells and blood vessels(including the bloodbrain barrier)together maintain an optimal microenvironment for neuronal function.They provide nutrients,regulate neuronal excitability,and prevent harmful substances from entering brain tissue.The highly dynamic networks of this support system play an essential role in ischemic stroke through processes including brain homeostasis,supporting neuronal function,and reacting to injuries.However,most studies have focused on postmortem animals,which inevitably lack critical information about the dynamic changes that occur after ischemic stroke.Therefore,a high-precision technique for research in living animals is urgently needed.Two-photon fluorescence laser-scanning microscopy is a powerful imaging technique that can facilitate live imaging at high spatiotemporal resolutions.Twophoton fluorescence laser-scanning microscopy can provide images of the whole-cortex vascular 3D structure,information on multicellular component interactions,and provide images of structure and function in the cranial window.This technique shifts the existing research paradigm from static to dynamic,from flat to stereoscopic,and from single-cell function to multicellular intercommunication,thus providing direct and reliable evidence to identify the pathophysiological mechanisms following ischemic stroke in an intact brain.In this review,we discuss exciting findings from research on the support system after ischemic stroke using two-photon fluorescence laser-scanning microscopy,highlighting the importance of dynamic observations of cellular behavior and interactions in the networks of the brain’s support systems.We show the excellent application prospects and advantages of two-photon fluorescence laser-scanning microscopy and predict future research developments and directions in the study of ischemic stroke.展开更多
Developing large-scale electrocatalysts using molecular complexes for the oxygen evolution reaction(OER)is of great importance. Herein, four cobalt porphyrins and corroles are deposited on electrode substrates using a...Developing large-scale electrocatalysts using molecular complexes for the oxygen evolution reaction(OER)is of great importance. Herein, four cobalt porphyrins and corroles are deposited on electrode substrates using a simple and fast electropolymerization method. Our results showed that Co-1-P@CC, formed by electropolymerizing Co tetrakis(p-N-pyrrolylphenyl)porphyrin(Co-1-P) on carbon cloth(CC), is the most active OER catalyst in the examined Co porphyrins and corroles in alkaline aqueous solutions by displaying an onset overpotential of 380 m V. Long-term electrolysis tests confirmed the stability of these electropolymerized films by functioning as OER electrocatalysts.展开更多
In this study,crevice corrosion performances of a newly developed LDSS 2002 and three commercial stainless steels(AISI 304,AISI 316L and DSS 2205)were investigated and discussed.Crevice repassivation potential(ER,CREV...In this study,crevice corrosion performances of a newly developed LDSS 2002 and three commercial stainless steels(AISI 304,AISI 316L and DSS 2205)were investigated and discussed.Crevice repassivation potential(ER,CREV),which was measured by the potentiodynamic-galvanostatic-potentiodynamic(PDGS-PD)test,was applicable to crevice corrosion evaluation of 304 and 316 L stainless steels.However,much lower(ER,CREV values were obtained for DSS 2205 and LDSS 2002.These abnormal(ER,CREV values for duplex stainless steels may be related to the selective attack of the less corrosion-resistant phase,the lower corrosion potential in the crevice-like solution,and more crevice corrosion sites in the PD-GS-PD test.A critical chloride concentration of crevice corrosion(CCCCREV)measurement was introduced for crevice corrosion evaluation of various stainless steels.The derived CCCCREVwas proved to be a valid criterion for crevice corrosion evaluation of both the austenitic and duplex stainless steels.An order of crevice corrosion resistance of AISI 304≈LDSS 2002<AISI 316 L<DSS 2205 was suggested,which agreed well with the orders of pitting resistance equivalent number and critical crevice index of the less corrosion-resistant phase in each material.展开更多
基金supported by the National Natural Science Foundation of China,Nos.92148206,82071330(both to ZT)a grant from the Major Program of Hubei Province,No.2023BAA005(to ZT)+1 种基金a grant from the Key Research and Discovery Program of Hubei Province,No.2021BCA109(to ZT)the Research Foundation of Tongji Hospital,No.2022B37(to PZ)。
文摘Recombinant tissue plasminogen activator is commonly used for hematoma evacuation in minimally invasive surgery following intracerebral hemorrhage.However,during minimally invasive surgery,recombinant tissue plasminogen activator may come into contact with brain tissue.Therefore,a thorough assessment of its safety is required.In this study,we established a mouse model of intracerebral hemorrhage induced by type VII collagenase.We observed that the administration of recombinant tissue plasminogen activator without hematoma aspiration significantly improved the neurological function of mice with intracerebral hemorrhage,reduced pathological damage,and lowered the levels of apoptosis and autophagy in the tissue surrounding the hematoma.In an in vitro model of intracerebral hemorrhage using primary cortical neurons induced by hemin,the administration of recombinant tissue plasminogen activator suppressed neuronal apoptosis,autophagy,and endoplasmic reticulum stress.Transcriptome sequencing analysis revealed that recombinant tissue plasminogen activator upregulated the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway in neurons.Moreover,the phosphoinositide 3-kinase inhibitor LY294002 abrogated the neuroprotective effects of recombinant tissue plasminogen activator in inhibiting excessive apoptosis,autophagy,and endoplasmic reticulum stress.Furthermore,to specify the domain of recombinant tissue plasminogen activator responsible for its neuroprotective effects,various inhibitors were used to target distinct domains.It has been revealed that the epidermal growth factor receptor inhibitor AG-1478 reversed the effect of recombinant tissue plasminogen activator on the phosphoinositide 3-kinase/RAC-alpha serine/threonineprotein kinase/mammalian target of rapamycin pathway.These findings suggest that recombinant tissue plasminogen activator exerts a direct neuroprotective effect on neurons following intracerebral hemorrhage,possibly through activation of the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway.
基金supported by the National Natural Science Foundation of China(22375101)the Natural Science of Colleges and Universities in Jiangsu Province(24KJB430027).
文摘Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without the dependence of antibiotic.Methods:Herein,we prepared ultrasound/magnetic field-responsive ferroferric oxide nanoparticles(Fe_(3)O_(4))/glucose oxidase microbubbles(FGMB)to form a cascade catalytic system for effective removing methicillin-resistant Staphylococcus aureus biofilms.FGMB were prepared through interfacial self-assembly of Fe_(3)O_(4) nanoparticles(NPs)and glucose oxidase(GOx)at the gas-liquid interface stabilized by surfactants.Under ultrasound/magnetic field stimulation,FGMB disrupted biofilm architecture through microbubble collapse-induced microjets and magnetically driven displacement.Simultaneously,ultrasound-triggered rupture of FGMB released GOx and Fe_(3)O_(4) NPs.Glucose can be oxidized by GOx to generate gluconic acid and hydrogen peroxide which was subsequently catalyzed into hydroxyl radicals by Fe_(3)O_(4) NPs,enabling chemical eradication of biofilm-embedded bacteria.Results:Optical microscopy images demonstrated that FGMB have spherical structure with average size of approximately 17μm.FGMB showed a 65.4%decrease in methicillin-resistant Staphylococcus aureus biofilm biomass and 1.1 log bacterial inactivation efficiency(91.2%),suggesting effective biofilm elimination.In vitro experimental results also indicate that FGMB have good biocompatibility.Conclusion:This antibiofilm strategy integrated dual modes of physical biofilm disruption with chemical bacteria-killing shows great potential as a versatile,non-resistant strategy for bacterial biofilm elimination.
基金supported by the National Natural Science Foundation of China, Nos.82201474 (to GL), 82071330 (to ZT), and 92148206 (to ZT)Key Research and Discovery Program of Hubei Province, No.2021BCA109 (to ZT)。
文摘Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as ‘cell polarization.’ There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations(microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.
基金financially supported by Natural Science Foundation of Shandong Province(Nos.ZR2022QB061,2022KJ181)National Key R&D Program of China(No.2023YFD1700903)。
文摘The development of multi-stimuli-responsive luminescent system to address emerging demands is essential in anti-counterfeiting field.Herein,a photoswitchable system was reported,which was constructed from photoacid sulfonato-merocyanine(MEH-D)serving as H+donor and diarylethene derivative(DAEA1)as acceptor.After capturing 2 equiv.HCl,the obtained fluorescent molecule DAE-A1-H showed solvatochromic property.Further on,benefiting from that MEH-D released protons and became a ring-closed isomer spiropyran(SP-D)under 440 nm irradiation,DAE-A1 was protonated,turning on fluorescence effect was realized in DAE-A1/MEH-D.In dark,a photo-activated reversible process was realized with SPD changed to MEH-D in situ system.In addition,the OF-DAE-A1-H/SP-D could efficiently and reversibly switch on/off its luminescence upon irradiation by UV–vis light.Significantly,the multi-stimuli-responsive system was successfully applied in logic gate and fluorescence ink,making it an efficient strategy for information encryption and decryption with higher security requirements.
基金supported by the National Natural Science Foundation of China(Nos.22002138,22372144,22272146,21922202)the Chinese Postdoctoral Science Foundation(No.2021M692714)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Chirality,ubiquitous in living matter,plays vital roles in a series of physiological processes.The clarification of the multiple functions of chirality in bioapplications may provide innovative methodologies for engineering anti-tumor agents.Nevertheless,the related research has been rarely explored.In this study,the chiral supramolecular l/d-cysteine(Cys)-Zn^(2+)-indocyanine green(ICG)nanoparticles were constructed through the coordination interaction between l/d-Cys and Zn^(2+),followed by the encapsulation of ICG.Experimental findings revealed that the d-Cys-Zn^(2+)-ICG exhibited 17.31 times higher binding affinity toward phospholipid-composed liposomes compared to l-Cys-Zn^(2+)-ICG.Furthermore,driven by chiralityspecific interaction,a 2.07 folds greater cellular internalization of d-Cys-Zn^(2+)-ICG than l-Cys-Zn^(2+)-ICG was demonstrated.Additionally,the triple-level chirality-dependent photothermal,photodynamic and Zn^(2+)releasing anti-tumor effects of l/d Cys-Zn^(2+)-ICG in vitro were verified.As a result,the d-formed nanoparticles achieved 1.93 times higher anti-tumor efficiency than the l-formed ones.The triple-level chirality-mediated anti-tumor effect highlighted in this study underscores the enormous potential of chirality in biomedicine and holds substantial significance in improving cancer therapeutic efficacy.
基金supported by the National Key Research and Development Program of China(No.2022YFA1602200)the National Natural Science Foundation of China(Nos.12341501 and 12405174)the Hefei Comprehensive National Science Center for the strong support on the STCF key technology research project.
文摘Electron-positron colliders operating in the GeV center-of-mass range,or tau-charm energy region,have been proved to enable competitive frontier research due to several unique features.With the progress of high-energy physics in the last two decades,a new-generation Tau-Charm factory,called the Super Tau-Charm Facility(STCF),has been actively promoted by the particle physics community in China.STCF has the potential to address fundamental questions such as the essence of color confinement and the matter-antimatter asymmetry within the next decades.The main design goals of the STCF are a center-of-mass energy ranging from 2 to 7 GeV and a luminosity surpassing 5×10^(34)cm^(−2)s^(−1)that is optimized at a center-of-mass energy of 4 GeV,which is approximately 50 times that of the currently operating Tau-Charm factory-BEPCII.The STCF accelerator has two main parts:a double-ring collider with a crab-waist collision scheme and an injector that provides top-up injections for both electron and positron beams.As a typical third-generation electron-positron circular collider,the STCF accelerator faces many challenges in both accelerator physics and technology.In this paper,the conceptual design of the STCF accelerator complex is presented,including the ongoing efforts and plans for technological research and develop-ment,as well as the required infrastructure.The STCF project aims to secure support from the Chinese central government for its construction during the 15th Five-Year Plan(2026-2030).
基金funded by the National Natural Science Foundation of China,grant numbers 61876189,61703426,and 61273275.
文摘With the growth of the Internet of Things(IoT)comes a flood of malicious traffic in the IoT,intensifying the challenges of network security.Traditional models operate with independent layers,limiting their effectiveness in addressing these challenges.To address this issue,we propose a cross-layer cooperative Feature Subset-Based Malicious Traffic Detection(FSMMTD)model for detecting malicious traffic.Our approach begins by applying an enhanced random forest method to adaptively filter and retain highly discriminative first-layer features.These processed features are then input into an improved state-space model that integrates the strengths of recurrent neural networks(RNNs)and transformers,enabling superior processing of complex patterns and global information.This integration allows the FSMMTD model to enhance its capability in identifying intricate data relationships and capturing comprehensive contextual insights.The FSMMTD model monitors IoT data flows in real-time,efficiently detecting anomalies and enabling rapid response to potential intrusions.We validate our approach using the publicly available ToN_IoT dataset for IoT traffic analysis.Experimental results demonstrate that our method achieves superior performance with an accuracy of 98.37%,precision of 96.28%,recall of 95.36%,and F1-score of 96.79%.These metrics indicate that the FSMMTD model outperforms existing methods in detecting malicious traffic,showcasing its effectiveness and reliability in enhancing IoT network security.
基金This work was jointly supported by the National Key Research and Development Program of China(No.2016YFA0401600)National Natural Science Foundation of China(Nos.11235012 and 12035017)+1 种基金the CSNS Engineering Projectthe Back-n Collaboration Consortium fund。
文摘Back-streaming neutrons from the spallation target of the China Spallation Neutron Source(CSNS)that emit through the incoming proton channel were exploited to build a white neutron beam facility(the so-called Back-n white neutron source),which was completed in March 2018.The Back-n neutron beam is very intense,at approximately 29107 n/cm2/s at 55 m from the target,and has a nominal proton beam with a power of 100 kW in the CSNS-I phase and a kinetic energy of 1.6 GeV and a thick tungsten target in multiple slices with modest moderation from the cooling water through the slices.In addition,the excellent energy spectrum spanning from 0.5 eV to 200 MeV,and a good time resolution related tothe time-of-flight measurements make it a typical white neutron source for nuclear data measurements;its overall performance is among that of the best white neutron sources in the world.Equipped with advanced spectrometers,detectors,and application utilities,the Back-n facility can serve wide applications,with a focus on neutron-induced cross-sectional measurements.This article presents an overview of the neutron beam characteristics,the experimental setups,and the ongoing applications at Backn.
基金financial support from the National Key Research and Development Program of China (No. 2018YFB0704400)the National Natural Science Foundation of China (Nos. 51501041, 51871061 and 51671059)
文摘Intergranular corrosion(IGC) behavior of the stabilized ultra-pure 430 LX ferritic stainless steel(FSS) was investigated by using double loop electrochemical potentiokinetic reactivation(DL-EPR) and oxalic acid etch tests to measure the susceptibility of specimens given a two-step heat treatment. The results reveal that IGC occurs in the specimens aged at the temperature range of 600–750℃ for a short time. The aging time that is required to cause IGC decreases with the increase of aging temperature. A longer aging treatment can reduce the susceptibility to IGC. The microstructural observation shows that M(23)C6 precipitates form along the grain boundaries, leading to the formation of Cr-depleted zones. The presence of Cr-depleted zones results in the susceptibility to IGC. However, the atoms of stabilizing elements replace chromium atoms to form MC precipitates after long-time aging treatment, resulting in the chromium replenishment of Cr-depleted zones and the reduction of the susceptibility to IGC.
基金supported by the National Key Research and Development Plan(No.2016YFA0401603)the National Natural Science Foundation of China(No.11675155)
文摘To verify the performance of the neutron total cross-sectional spectrometer, the neutron total cross section of carbon is initially measured in the energy range of 1 eV to 20 MeV using the time-of-flight method. The measurement is performed at the Back-n white neutron source with a 76-m time-of-flight path using the China Spallation Neutron Source. A multilayer fast fission chamber with 235U and 238U is employed as the neutron detector. The diameter and thickness of the natural graphite sample are 70 mm and 40 mm, respectively. Signal waveforms are collected using a data acquisition system. Off-line data processing was used to obtain the neutron time-of-flight spectra and transmissions. The uncertainty of the counting statistics is generally approximately 3% for each bin in the energy range of 1–20 MeV. It is determined that the results for the neutron total cross section of carbon obtained using ^235U cells are in good agreement with the results obtained using 238U cells within limits of statistical uncertainty. Moreover, the measured total cross sections show good agreement with the broadening evaluated data.
文摘Both platinum-based doublet chemotherapy(PBC) and epidermal growth factor receptor tyrosine kinase inhibitors(EGFR-TKIs) prolong the survival of patients with advanced non-small cell lung cancer(NSCLC). In early studies, most patients underwent PBC as first-line treatment, but not all patients could afford EGFR-TKIs as second-line treatment. To understand the impact of PBC and EGFR-TKIs on NSCLC prognosis, we evaluated the association between the receipt of both regimens and overall survival(OS). Using MEDLINE and EMBASE, we identified prospective, randomized, controlled phase III clinical trials in advanced NSCLC that met the inclusion criteria: in general population with advanced NSCLC, the percentage of patients treated with both PBC and EGFR-TKIs was available in the trial and OS was reported. After collecting data from the selected trials, we correlated the percentage of patients treated with both PBC and EGFR-TKIs with the reported OS, using a weighted analysis. Fifteen phase III clinical trials—involving 11,456 adult patients in 32 arms—were included in the analysis, including 6 trials in Asian populations and 9 in non-Asian(predominantly Caucasian) populations. The OS was positively correlated with the percentage of patients treated with both PBC and EGFR-TKIs(r = 0.797, P < 0.001). The correlation was obvious in the trials in Asian populations(r = 0.936, P < 0.001) but was not statistically significant in the trials in predominantly Caucasian populations(r = 0.116, P = 0.588). These results suggest that treatment with PBC and EGFR-TKIs may provide a survival benefit to patients with advanced NSCLC, highlighting the importance of having both modalities available for therapy.
基金supported by the National High Technology Research and Development Program of China (Grant No.2012AA02A501 and 2012AA02A502)Sun Yat-sen University Clinical Medical Research Project 5010 (Grant No.20130008)
文摘Background: The TNM staging system is far from perfect in predicting the survival of individual cancer patients because only the gross anatomy is considered. The survival rates of the patients who have the same TNM stage disease vary across a wide spectrum. This study aimed to develop a nomogram that incorporates other clinicopathologic factors for predicting the overall survival(OS) of non-metastatic nasopharyngeal carcinoma(NPC) patients after curative treatments.Methods: We retrospectively collected the clinical data of 1520 NPC patients who were diagnosed histologically between November 2000 and September 2003. The clinical data of a separate cohort of 464 patients who received intensity-modulated radiation therapy(IMRT) between 2001 and 2010 were also retrieved to examine the extensibility of the model. Cox regression analysis was used to identify the prognostic factors for building the nomogram. The predictive accuracy and discriminative ability were measured using the concordance index(c-index).Results: We identiied and incorporated 12 independent clinical factors into the nomogram. The calibration curves showed that the prediction of OS was in good agreement with the actual observation in the internal validation set and IMRT cohort. The c-index of the nomogram was statistically higher than that of the 7th edition TNM staging system for predicting the survival in both the primary cohort(0.69 vs. 0.62) and the IMRT cohort(0.67 vs. 0.63).Conclusion: We developed and validated a novel nomogram that outperformed the TNM staging system in predicting the OS of non-metastatic NPC patients who underwent curative therapy.
基金supported by the National Natural Science Foundation of China(Nos.11675155,11790321,and 12075216)the National Key Research and Development Plan(No.2016YFA0401603).
文摘The ^(232)Th(n,f)cross section is very important in basic nuclear physics and applications based on the Th/U fuel cycle.Using the time-of-flight method and a multi-cell fast-fission ionization chamber,a novel measurement of the^(232)Th(n,f)cross sec-tion relative to^(235)U in the 1–200 MeV range was performed at the China Spallation Neutron Source Back-n white neutron source(Back-n).The fission event-neutron energy spectra of^(232)Th and^(235)U fission cells were measured in the single-bunch mode.Corrected 232Th/235U fission cross-sectional ratios were obtained,and the measurement uncertainties were 2.5–3.7%for energies in the 2–20 MeV range and 3.6–6.2%for energies in the 20–200 MeV range.The^(232)Th(n,f)cross section was obtained by introducing the standard cross section of^(235)U(n,f).The results were compared with those of previous theoreti-cal calculations,measurements,and evaluations.The measured 232Th fission cross section agreed with the main evaluation results in terms of the experimental uncertainty,and 232Th fission resonances were observed in the 1–3 MeV range.The present results provide^(232)Th(n,f)cross-sectional data for the evaluation and design of Th/U cycle nuclear systems.
基金supported by the Land and Resources Survey Project of China (Grant Nos. 1212011120725 and 12120113072200)
文摘Latest Permian to Triassic plutons are widespread in the northern North China Craton(NCC); most of them show calc-alkaline, high-K calc-alkaline, or alkaline geochemical features. The Shadegai pluton in the Wulashan area has shoshonitic affinity and I-type character, and is composed of syenogranites containing abundant mafic microgranular enclaves(MMEs). LA-MC-ICP-MS U-Pb data yield weighted mean 206 Pb/238 U ages of 222 ± 1 Ma and 221 ± 1 Ma for the syenogranites and MMEs, respectively, suggesting their coeval formation during the Late Triassic. The syenogranites have high SiO_2(70.42-72.30 wt%),K_2O(4.58-5.22 wt.%) and Na_2O(4.19-4.43 wt.%) contents but lower concentrations of P_2O_5(0.073-0.096 wt.%) and TiO_2(0.27-0.37 wt.%), and are categorized as I-type granites, rather than A-type granites, as previously thought. These syenogranites exhibit lower(^(87)Sr/^(86)Sr)i ratios(0.70532-0.70547) and strongly negative whole-rock εNd(t) values(-12.54 to-11.86) and zircon εHf(t) values(-17.81 to-10.77),as well as old Nd(1962-2017 Ma) and Hf(2023-2092 Ma) model ages, indicating that they were derived from the lower crust.Field and petrological observations reveal that the MMEs within the pluton probably represent magmatic globules commingled with their host magmas. Geochemically, these MMEs have low SiO_2(53.46-55.91 wt.%)but high FeOt(7.27-8.79 wt.%) contents. They are enriched in light rare earth elements(LREEs) and large ion lithophile elements(LILEs), and are depleted in heavy rare earth elements(HREEs) and high field strength elements(HFSEs). They have whole-rock(^(87)Sr/^(86)Sr)i ratios varying from 0.70551 to 0.70564, εNd(t) values of -10.63 to -9.82, and zircon εHf(t) values of -9.89 to 0.19. Their geochemical and isotopic features indicate that they were derived from the subcontinental lithospheric mantle mainly metasomatized by slab-derived fluids, with minor involvement of melts generated from the ascending asthenospheric mantle. Petrology integrated with elemental and isotopic geochemistry suggest that the Shadegai pluton was produced by crust-mantle interactions, i.e., partial melting of the lower continental crust induced by underplating of mantle-derived mafic magmas(including the subcontinental lithospheric mantle and asthenospheric mantle), and subsequent mixing of the mantle-and crust-derived magmas. In combination with existing geological data, it is inferred that the Shadegai pluton formed in a post-collisional extensional regime related to lithospheric delamination following the collision between the NCC and Mongolia arc terranes.
基金supported by grants from the National Natural Science Foundation of China,Nos.92148206,82071330(to ZPT)82201745(to HN)the Natural Science Foundation of Hubei Province,China,Nos.2021BCA109(to ZPT)and 2021CFB067(to HN)。
文摘Ischemic stroke is one of the most common causes of mortality and disability worldwide.However,treatment efficacy and the progress of research remain unsatisfactory.As the critical support system and essential components in neurovascular units,glial cells and blood vessels(including the bloodbrain barrier)together maintain an optimal microenvironment for neuronal function.They provide nutrients,regulate neuronal excitability,and prevent harmful substances from entering brain tissue.The highly dynamic networks of this support system play an essential role in ischemic stroke through processes including brain homeostasis,supporting neuronal function,and reacting to injuries.However,most studies have focused on postmortem animals,which inevitably lack critical information about the dynamic changes that occur after ischemic stroke.Therefore,a high-precision technique for research in living animals is urgently needed.Two-photon fluorescence laser-scanning microscopy is a powerful imaging technique that can facilitate live imaging at high spatiotemporal resolutions.Twophoton fluorescence laser-scanning microscopy can provide images of the whole-cortex vascular 3D structure,information on multicellular component interactions,and provide images of structure and function in the cranial window.This technique shifts the existing research paradigm from static to dynamic,from flat to stereoscopic,and from single-cell function to multicellular intercommunication,thus providing direct and reliable evidence to identify the pathophysiological mechanisms following ischemic stroke in an intact brain.In this review,we discuss exciting findings from research on the support system after ischemic stroke using two-photon fluorescence laser-scanning microscopy,highlighting the importance of dynamic observations of cellular behavior and interactions in the networks of the brain’s support systems.We show the excellent application prospects and advantages of two-photon fluorescence laser-scanning microscopy and predict future research developments and directions in the study of ischemic stroke.
基金support from National Natural Science Foundation of China (Nos. 21773146 and 21902099)China Postdoctoral Science Foundation (No. 2018M631120)+2 种基金Shaanxi Province Postdoctoral Science Foundation (No. 2018BSHEDZZ107)Fundamental Research Funds for the Central Universities (Nos. GK202103045 and GK202103050)Research funds of Shaanxi Normal University, and the open fund of State Key Laboratory of Structural Chemistry。
文摘Developing large-scale electrocatalysts using molecular complexes for the oxygen evolution reaction(OER)is of great importance. Herein, four cobalt porphyrins and corroles are deposited on electrode substrates using a simple and fast electropolymerization method. Our results showed that Co-1-P@CC, formed by electropolymerizing Co tetrakis(p-N-pyrrolylphenyl)porphyrin(Co-1-P) on carbon cloth(CC), is the most active OER catalyst in the examined Co porphyrins and corroles in alkaline aqueous solutions by displaying an onset overpotential of 380 m V. Long-term electrolysis tests confirmed the stability of these electropolymerized films by functioning as OER electrocatalysts.
基金financially supported by the National Natural Science Foundation of China(Nos.51671059,51871061 and 51801028)。
文摘In this study,crevice corrosion performances of a newly developed LDSS 2002 and three commercial stainless steels(AISI 304,AISI 316L and DSS 2205)were investigated and discussed.Crevice repassivation potential(ER,CREV),which was measured by the potentiodynamic-galvanostatic-potentiodynamic(PDGS-PD)test,was applicable to crevice corrosion evaluation of 304 and 316 L stainless steels.However,much lower(ER,CREV values were obtained for DSS 2205 and LDSS 2002.These abnormal(ER,CREV values for duplex stainless steels may be related to the selective attack of the less corrosion-resistant phase,the lower corrosion potential in the crevice-like solution,and more crevice corrosion sites in the PD-GS-PD test.A critical chloride concentration of crevice corrosion(CCCCREV)measurement was introduced for crevice corrosion evaluation of various stainless steels.The derived CCCCREVwas proved to be a valid criterion for crevice corrosion evaluation of both the austenitic and duplex stainless steels.An order of crevice corrosion resistance of AISI 304≈LDSS 2002<AISI 316 L<DSS 2205 was suggested,which agreed well with the orders of pitting resistance equivalent number and critical crevice index of the less corrosion-resistant phase in each material.