Avian vocal communication represents one of the most intricate forms of animal language,playing a critical role in behavioral interactions.Both peripheral and central auditory-vocal pathways are essential for precisel...Avian vocal communication represents one of the most intricate forms of animal language,playing a critical role in behavioral interactions.Both peripheral and central auditory-vocal pathways are essential for precisely integrating acoustic signals,ensuring effective communication.Like humans,songbirds exhibit vocal learning behaviors supported by complex neural mechanisms.However,unlike most mammals,songbirds possess the remarkable ability to regenerate damaged auditory cells.These capabilities offer unique opportunities to explore how birds adjust their vocal behavior and auditory processing in response to dynamic environmental conditions.Recent studies have advanced our understanding of the plasticity of avian vocal communication system,yet the vocal diversity and neurophysiological mechanisms underlying vocalization and hearing have often been examined independently.A comprehensive overview of how these systems interact and adapt in birds remains lacking.To address this gap,this review synthesizes the peripheral and central features of avian vocalization and hearing,while also exploring the mechanisms that drive the remarkable plasticity of these systems.Furthermore,it explores seasonal variations in bird vocalization and hearing and adaptations to environmental noise,focusing on how hormonal,neural,and ecological factors together shape vocal behavior and auditory sensitivity.Avian vocal communication systems present an exceptional model for studying the integration of peripheral and central vocal-auditory pathways and their adaptive responses to ever-changing environments.This review underscores the dynamic interactions between avian vocal communication systems and environmental stimuli,offering new insights into broader principles of sensory processing,and neuroplasticity.展开更多
目的观察湿化高流量鼻导管通气(humidified high flow nasal cannula,HFNC)在纤维支气管镜(以下简称纤支镜)检查静脉全麻中的应用效果。方法选择拟择期行纤支镜检查患者60例,随机分为对照组(C组)和HFNC组(H组),每组30例。所有患者均采...目的观察湿化高流量鼻导管通气(humidified high flow nasal cannula,HFNC)在纤维支气管镜(以下简称纤支镜)检查静脉全麻中的应用效果。方法选择拟择期行纤支镜检查患者60例,随机分为对照组(C组)和HFNC组(H组),每组30例。所有患者均采用丙泊酚复合瑞芬太尼全凭静脉麻醉,C组采用普通鼻导管吸氧,H组采用湿化高流量鼻导管通气。记录两组患者的一般情况、手术期间的氧合情况、生命体征、麻醉药物总用量、苏醒时间及患者满意度,记录相关并发症和不良反应。结果两组患者的一般情况、手术时间、麻醉时间、丙泊酚和瑞芬太尼用量、苏醒时间的比较均差异无统计学意义(P>0.05)。H组轻度缺氧和重度缺氧的发生率明显低于C组(P<0.001)。两组患者其他并发症及满意度的比较差异无统计学意义(P>0.05)。结论HFNC可有效改善静脉全麻下行纤支镜检查术患者的氧合情况,提高手术麻醉的安全性。展开更多
This study focuses on the transient liquid phase(TLP)bonding of DD5 single-crystal superalloy to Cr Co Nibased medium-entropy alloy(MEA)using a BNi-2 filler alloy.The microstructure and mechanical properties of the TL...This study focuses on the transient liquid phase(TLP)bonding of DD5 single-crystal superalloy to Cr Co Nibased medium-entropy alloy(MEA)using a BNi-2 filler alloy.The microstructure and mechanical properties of the TLP-bonded DD5/MEA joint were evaluated,and the microstructural evolution mechanism was investigated.The formation of the isothermal solidification zone(ISZ)depended on the diffusion of the melting-point depressants(Si and B elements)from the liquid filler into the DD5 and MEA substrates,as well as the dissolution of the substrates.Boron diffused along theγchannel of DD5 and reacted to form M_(5)B_(3)boride,herein referred to as the diffusion-affected zone(DAZ I).Similarly,the Cr_(5)B_(3)boride precipitated in the Ni-rich MEA matrix adjacent to the MEA substrate(i.e.,DAZ II).Additionally,a coherent orientation of[0]_(BCY)//[011]_(FCC)and(002)_(BCY)//(200)_(FCC)was detected between M_(5)B_(3)boride with a body-centered tetragonal(BCT)structure and the face-centered cubic(FCC)matrix.The performance of the joint was dominated by the properties of the bonding seam.As the bonding time increased from 20to 80 min,the athermal solidification zone(including eutectic microstructure)was gradually replaced by the ISZ exhibiting excellent plastic deformation capability,and the shear strength of the joint was improved.The maximum shear strength(752 MPa)was achieved when the eutectic-free joint was bonded at 1050℃ for 80 min.The fracture morphology revealed a mixture mode,indicating the initiation of cracks in the DAZ II,mainly propagating in the ISZ,and passing through the DAZ I.展开更多
This study aims to develop a model to characterize the inhomogeneous material deformation behavior in micro-forming.First,the influence of individual grain heterogeneity on the deformation behavior of CuZn20 foils was...This study aims to develop a model to characterize the inhomogeneous material deformation behavior in micro-forming.First,the influence of individual grain heterogeneity on the deformation behavior of CuZn20 foils was investigated via tensile and micro-hardness tests.The results showed that different from thick sheets,the hardening behavior of grains in the deformation area of thin foils is not uniform.The flow stress of thin foils actually only reflects the average hardening behavior of several easy-deformation-grains,which is the reason that thinner foils own smaller flow stress.Then,a composite modeling method under consideration of individual grain heterogeneity was developed,where the effects of grain orientation and shape are quantitatively represented by the method of flow stress classification and Voronoi tessellation,respectively.This model provides an accurate and effective method to analyze the influence of individual grain heterogeneity on the deformation behavior of the micro-sized material.展开更多
This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structu...This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structures,are employed to discretize the physical unknowns in the boundary integral formulations of the governing equations.Bezier extraction technique is employed to accelerate the evaluation of NURBS basis functions.We adopt a radial integration method to address the additional domain integrals.The numerical examples demonstrate the advantage of IGABEM in dimension reduction and the seamless connection between CAD and numerical analysis.展开更多
This paper presents a novel framework for stochastic analysis of linear elastic fracture problems.Monte Carlo simulation(MCs)is adopted to address the multi-dimensional uncertainties,whose computation cost is reduced ...This paper presents a novel framework for stochastic analysis of linear elastic fracture problems.Monte Carlo simulation(MCs)is adopted to address the multi-dimensional uncertainties,whose computation cost is reduced by combination of Proper Orthogonal Decomposition(POD)and the Radial Basis Function(RBF).In order to avoid re-meshing and retain the geometric exactness,isogeometric boundary element method(IGABEM)is employed for simulation,in which the Non-Uniform Rational B-splines(NURBS)are employed for representing the crack surfaces and discretizing dual boundary integral equations.The stress intensity factors(SIFs)are extracted by M integral method.The numerical examples simulate several cracked structures with various uncertain parameters such as load effects,materials,geometric dimensions,and the results are verified by comparison with the analytical solutions.展开更多
In this work,two aza-BODIPY derivatives,3,5-diphenyl-1,7-di(p-dodecyloxyphenyl)-aza-BODIPY(CJF)and 3,5-di(p-bromophenyl)-1,7-di(p-dodecyloxyphenyl)-aza-BODIPY(2Br-CJF)acted as model molecules to form the self-assembly...In this work,two aza-BODIPY derivatives,3,5-diphenyl-1,7-di(p-dodecyloxyphenyl)-aza-BODIPY(CJF)and 3,5-di(p-bromophenyl)-1,7-di(p-dodecyloxyphenyl)-aza-BODIPY(2Br-CJF)acted as model molecules to form the self-assembly monolayers on the solid-liquid interface.With the utilizing of scanning tunnelling microscope(STM),we demonstrated that intermolecular Br…F-BF interactions existed in 2Br-CJF self-assembly structure and played an important role in strengthening the stability of 2Br-CJF self-assembly structure.This result is supported by density functional theory(DFT)calculation.展开更多
The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral ...The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples.展开更多
Many previous studies have shown that the molecular structures of oligothiophene derivatives including molecular skeleton and alkyl chains have a significant effect on their self-assemblies on the surface.In this work...Many previous studies have shown that the molecular structures of oligothiophene derivatives including molecular skeleton and alkyl chains have a significant effect on their self-assemblies on the surface.In this work, a series of linear oligothiophene derivatives(DCV-n T-Hex, n = 3~11) modified with terminal dicyanovinyls and alkyl chains were adopted to further investigate the different assembly behaviors at liquid-solid interface by scanning tunneling microscopy(STM). Interestingly, via the hydrogen bonding and van der Waals interactions, DCV-3T-Hex formed zigzag and flower structures while DCV-n T-Hex(n = 4~11) formed lamellar structures. Density functional theory(DFT) calculations show that for the most energetically favorable configurations of DCV-n T-Hex, the different distribution of alkyl chains affected intermolecular interactions, and ultimately led to the different assembled structures. The zigzag and flower structures of DCV-3T-Hex had preferential thermodynamic stability compared to other structures of DCV-n T-Hex(n = 4~11). In addition, self-assembled nanostructures of DCV-n T-Hex molecules with even numbers(n = 4, 6, 8, 10) were overall more stable than those with odd numbers(n = 5, 7, 9,11), and the stability of the self-assembled structure was weakened with the extension of the molecular backbone, individually. The orientation of molecular alkyl chains was found to greatly affect the intermolecular interactions and thus leading to various self-assembly structures of DCV-n T-Hex(n = 3~11).展开更多
In group-living animals,chronic juvenile social isolation stress(SIS)can profoundly affect behavior and neuroendocrine regulation.However,its impact on social behavior in avian species,particularly regarding sexspecif...In group-living animals,chronic juvenile social isolation stress(SIS)can profoundly affect behavior and neuroendocrine regulation.However,its impact on social behavior in avian species,particularly regarding sexspecific neural circuit differences,remains underexplored.This study focused on zebra finches,a species known for its social clustering and cognitive abilities,to elucidate these influences.Results indicated that SIS significantly increased plasma corticosterone levels in females but not in males,suggesting a heightened stress response and susceptibility in females.Additionally,SIS disrupted sociality and flocking behavior in both sexes,with more severe impairments in social recognition observed in females.Mesotocin(MT)levels in the lateral septum of both sexes and in the ventromedial hypothalamus of females were found to mediate the SIS effect,while vasotocin(VT)levels within the social behavior network remained unchanged.Pharmacological interventions confirmed the critical role of MT in reversing SIS-induced impairments in sociality,flocking behavior,and social recognition,particularly in females.These findings highlight unique nucleus-and sex-dependent variations in MT and VT regulation,providing novel insights into the mechanisms governing avian social behavior.This study advances our understanding of the independent evolutionary pathways of neural circuits and neuroendocrine systems that modulate social behaviors across different taxonomic groups.展开更多
This work presents some numerical aspects of isogeometric boundary element methods(IGABEM).The behavior of hyper-singular and nearly-singular integration is first explored on the distorted NURBS surface.Several numeri...This work presents some numerical aspects of isogeometric boundary element methods(IGABEM).The behavior of hyper-singular and nearly-singular integration is first explored on the distorted NURBS surface.Several numerical treatments are proposed to enhance the quadrature in the framework of isogeometric analysis.Then a numerical implementation of IGABEM on the trimmed NURBS is detailed.Based on this idea,the surface crack problem is modeled incorporation with the phantom element method.The proposed method allows the crack to intersect with the boundary of the body while preserving the original parametrization of the NURBS-based CAD geometry.展开更多
基金supported by the National Natural Science Foundation of China(NSFC,32471572)to D.L.the NSFC(32401298)the Hebei Natural Science Foundation(C2023205016)to L.W。
文摘Avian vocal communication represents one of the most intricate forms of animal language,playing a critical role in behavioral interactions.Both peripheral and central auditory-vocal pathways are essential for precisely integrating acoustic signals,ensuring effective communication.Like humans,songbirds exhibit vocal learning behaviors supported by complex neural mechanisms.However,unlike most mammals,songbirds possess the remarkable ability to regenerate damaged auditory cells.These capabilities offer unique opportunities to explore how birds adjust their vocal behavior and auditory processing in response to dynamic environmental conditions.Recent studies have advanced our understanding of the plasticity of avian vocal communication system,yet the vocal diversity and neurophysiological mechanisms underlying vocalization and hearing have often been examined independently.A comprehensive overview of how these systems interact and adapt in birds remains lacking.To address this gap,this review synthesizes the peripheral and central features of avian vocalization and hearing,while also exploring the mechanisms that drive the remarkable plasticity of these systems.Furthermore,it explores seasonal variations in bird vocalization and hearing and adaptations to environmental noise,focusing on how hormonal,neural,and ecological factors together shape vocal behavior and auditory sensitivity.Avian vocal communication systems present an exceptional model for studying the integration of peripheral and central vocal-auditory pathways and their adaptive responses to ever-changing environments.This review underscores the dynamic interactions between avian vocal communication systems and environmental stimuli,offering new insights into broader principles of sensory processing,and neuroplasticity.
文摘目的观察湿化高流量鼻导管通气(humidified high flow nasal cannula,HFNC)在纤维支气管镜(以下简称纤支镜)检查静脉全麻中的应用效果。方法选择拟择期行纤支镜检查患者60例,随机分为对照组(C组)和HFNC组(H组),每组30例。所有患者均采用丙泊酚复合瑞芬太尼全凭静脉麻醉,C组采用普通鼻导管吸氧,H组采用湿化高流量鼻导管通气。记录两组患者的一般情况、手术期间的氧合情况、生命体征、麻醉药物总用量、苏醒时间及患者满意度,记录相关并发症和不良反应。结果两组患者的一般情况、手术时间、麻醉时间、丙泊酚和瑞芬太尼用量、苏醒时间的比较均差异无统计学意义(P>0.05)。H组轻度缺氧和重度缺氧的发生率明显低于C组(P<0.001)。两组患者其他并发症及满意度的比较差异无统计学意义(P>0.05)。结论HFNC可有效改善静脉全麻下行纤支镜检查术患者的氧合情况,提高手术麻醉的安全性。
基金supported by the fund of Natural Science Basic Research Program of Shaanxi(Grant No.2020JQ-190)National Natural Science Foundations of China(Grant Nos.51975480,52075449,and U1737205)China Postdoctoral Science Foundation funded project(Grant Nos.2019TQ0263,and 2020M683560)。
文摘This study focuses on the transient liquid phase(TLP)bonding of DD5 single-crystal superalloy to Cr Co Nibased medium-entropy alloy(MEA)using a BNi-2 filler alloy.The microstructure and mechanical properties of the TLP-bonded DD5/MEA joint were evaluated,and the microstructural evolution mechanism was investigated.The formation of the isothermal solidification zone(ISZ)depended on the diffusion of the melting-point depressants(Si and B elements)from the liquid filler into the DD5 and MEA substrates,as well as the dissolution of the substrates.Boron diffused along theγchannel of DD5 and reacted to form M_(5)B_(3)boride,herein referred to as the diffusion-affected zone(DAZ I).Similarly,the Cr_(5)B_(3)boride precipitated in the Ni-rich MEA matrix adjacent to the MEA substrate(i.e.,DAZ II).Additionally,a coherent orientation of[0]_(BCY)//[011]_(FCC)and(002)_(BCY)//(200)_(FCC)was detected between M_(5)B_(3)boride with a body-centered tetragonal(BCT)structure and the face-centered cubic(FCC)matrix.The performance of the joint was dominated by the properties of the bonding seam.As the bonding time increased from 20to 80 min,the athermal solidification zone(including eutectic microstructure)was gradually replaced by the ISZ exhibiting excellent plastic deformation capability,and the shear strength of the joint was improved.The maximum shear strength(752 MPa)was achieved when the eutectic-free joint was bonded at 1050℃ for 80 min.The fracture morphology revealed a mixture mode,indicating the initiation of cracks in the DAZ II,mainly propagating in the ISZ,and passing through the DAZ I.
基金Project(51905362)supported by the National Natural Science Foundation of ChinaProjects(19KJB460022,18KJB130006)supported by the Natural Science Foundation of Jiangsu Higher Education Institution,China。
文摘This study aims to develop a model to characterize the inhomogeneous material deformation behavior in micro-forming.First,the influence of individual grain heterogeneity on the deformation behavior of CuZn20 foils was investigated via tensile and micro-hardness tests.The results showed that different from thick sheets,the hardening behavior of grains in the deformation area of thin foils is not uniform.The flow stress of thin foils actually only reflects the average hardening behavior of several easy-deformation-grains,which is the reason that thinner foils own smaller flow stress.Then,a composite modeling method under consideration of individual grain heterogeneity was developed,where the effects of grain orientation and shape are quantitatively represented by the method of flow stress classification and Voronoi tessellation,respectively.This model provides an accurate and effective method to analyze the influence of individual grain heterogeneity on the deformation behavior of the micro-sized material.
基金funded by National Natural Science Foundation of China(NSFC)under Grant Nos.11702238,51904202,and 11902212Nanhu Scholars Program for Young Scholars of XYNU.
文摘This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structures,are employed to discretize the physical unknowns in the boundary integral formulations of the governing equations.Bezier extraction technique is employed to accelerate the evaluation of NURBS basis functions.We adopt a radial integration method to address the additional domain integrals.The numerical examples demonstrate the advantage of IGABEM in dimension reduction and the seamless connection between CAD and numerical analysis.
基金The authors thank the financial support of National Natural Science Foundation of China(NSFC)under Grant(Nos.51904202,11902212,11901578).
文摘This paper presents a novel framework for stochastic analysis of linear elastic fracture problems.Monte Carlo simulation(MCs)is adopted to address the multi-dimensional uncertainties,whose computation cost is reduced by combination of Proper Orthogonal Decomposition(POD)and the Radial Basis Function(RBF).In order to avoid re-meshing and retain the geometric exactness,isogeometric boundary element method(IGABEM)is employed for simulation,in which the Non-Uniform Rational B-splines(NURBS)are employed for representing the crack surfaces and discretizing dual boundary integral equations.The stress intensity factors(SIFs)are extracted by M integral method.The numerical examples simulate several cracked structures with various uncertain parameters such as load effects,materials,geometric dimensions,and the results are verified by comparison with the analytical solutions.
基金financially supported by the National Basic Research Program of China(No.2016YFA0200700)the National Natural Science Foundation of China(Nos.21773041,21972031)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000)the Open Research Fund of School of Chemistry and Chemical Engineering,Henan Normal UniversityNational Science Foundation of Zhejiang Province of China(No.Y20B020032)Project of Ningbo Science and Technology Innovation 2025.
文摘In this work,two aza-BODIPY derivatives,3,5-diphenyl-1,7-di(p-dodecyloxyphenyl)-aza-BODIPY(CJF)and 3,5-di(p-bromophenyl)-1,7-di(p-dodecyloxyphenyl)-aza-BODIPY(2Br-CJF)acted as model molecules to form the self-assembly monolayers on the solid-liquid interface.With the utilizing of scanning tunnelling microscope(STM),we demonstrated that intermolecular Br…F-BF interactions existed in 2Br-CJF self-assembly structure and played an important role in strengthening the stability of 2Br-CJF self-assembly structure.This result is supported by density functional theory(DFT)calculation.
基金This study was funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.11702238,51904202 and 11902212)and Nanhu Scholars Program for Young Scholars of XYNU.
文摘The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples.
基金financially supported by the National Basic Research Program of China (No. 2017YFA0205000)the National Natural Science Foundation of China (No. 21972031)the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000)。
文摘Many previous studies have shown that the molecular structures of oligothiophene derivatives including molecular skeleton and alkyl chains have a significant effect on their self-assemblies on the surface.In this work, a series of linear oligothiophene derivatives(DCV-n T-Hex, n = 3~11) modified with terminal dicyanovinyls and alkyl chains were adopted to further investigate the different assembly behaviors at liquid-solid interface by scanning tunneling microscopy(STM). Interestingly, via the hydrogen bonding and van der Waals interactions, DCV-3T-Hex formed zigzag and flower structures while DCV-n T-Hex(n = 4~11) formed lamellar structures. Density functional theory(DFT) calculations show that for the most energetically favorable configurations of DCV-n T-Hex, the different distribution of alkyl chains affected intermolecular interactions, and ultimately led to the different assembled structures. The zigzag and flower structures of DCV-3T-Hex had preferential thermodynamic stability compared to other structures of DCV-n T-Hex(n = 4~11). In addition, self-assembled nanostructures of DCV-n T-Hex molecules with even numbers(n = 4, 6, 8, 10) were overall more stable than those with odd numbers(n = 5, 7, 9,11), and the stability of the self-assembled structure was weakened with the extension of the molecular backbone, individually. The orientation of molecular alkyl chains was found to greatly affect the intermolecular interactions and thus leading to various self-assembly structures of DCV-n T-Hex(n = 3~11).
基金supported by the National Natural Science Foundation of China (31971413) to D.L.Hebei Natural Science Foundation (C2023205016)Foundation of Hebei Normal University(L2020B21) to L.W。
文摘In group-living animals,chronic juvenile social isolation stress(SIS)can profoundly affect behavior and neuroendocrine regulation.However,its impact on social behavior in avian species,particularly regarding sexspecific neural circuit differences,remains underexplored.This study focused on zebra finches,a species known for its social clustering and cognitive abilities,to elucidate these influences.Results indicated that SIS significantly increased plasma corticosterone levels in females but not in males,suggesting a heightened stress response and susceptibility in females.Additionally,SIS disrupted sociality and flocking behavior in both sexes,with more severe impairments in social recognition observed in females.Mesotocin(MT)levels in the lateral septum of both sexes and in the ventromedial hypothalamus of females were found to mediate the SIS effect,while vasotocin(VT)levels within the social behavior network remained unchanged.Pharmacological interventions confirmed the critical role of MT in reversing SIS-induced impairments in sociality,flocking behavior,and social recognition,particularly in females.These findings highlight unique nucleus-and sex-dependent variations in MT and VT regulation,providing novel insights into the mechanisms governing avian social behavior.This study advances our understanding of the independent evolutionary pathways of neural circuits and neuroendocrine systems that modulate social behaviors across different taxonomic groups.
基金National Natural Science Foundation of China(NSFC)under Grant(No.51904202).
文摘This work presents some numerical aspects of isogeometric boundary element methods(IGABEM).The behavior of hyper-singular and nearly-singular integration is first explored on the distorted NURBS surface.Several numerical treatments are proposed to enhance the quadrature in the framework of isogeometric analysis.Then a numerical implementation of IGABEM on the trimmed NURBS is detailed.Based on this idea,the surface crack problem is modeled incorporation with the phantom element method.The proposed method allows the crack to intersect with the boundary of the body while preserving the original parametrization of the NURBS-based CAD geometry.