In-space 3D printing is transforming the manufacturing paradigm of space structures from ground-based production to in-situ space manufacturing,effectively addressing the challenges of high costs,long response times,a...In-space 3D printing is transforming the manufacturing paradigm of space structures from ground-based production to in-situ space manufacturing,effectively addressing the challenges of high costs,long response times,and structural size limitations associated with traditional rocket launches.This technology enables rapid on-orbit emergency repairs and significantly expands the geometric dimensions of space structures.High-performance polymers and their composites are widely used in in-space 3D printing,yet their implementation faces complex challenges posed by extreme space environmental conditions and limited energy or resources.This paper reviews the state-of-the-art in 3D printing of polymer and composites for on-orbit structure manufacturing.Based on existing research activities,the review focuses on three key aspects including the impact of extreme space environments on forming process and performance,innovative design and manufacturing methods for space structures,and on-orbit recycling and remanufacturing of raw materials.Some experiments that have already been conducted on-orbit and simulated experiments completed on the ground are systematically analyzed to provide a more comprehensive understanding of the constraints and objectives for on-orbit structure manufacturing.Furthermore,several perspectives requiring further research in future are proposed to facilitate the development of new in-space 3D printing technologies and space structures,thereby supporting increasingly advanced space exploration activities.展开更多
基金supported by National Natural Science Foundation of China(Grant No.52205413)National Key Research and Development Program(Grant No.2022YFB3806101)+1 种基金K C Wong Education FoundationThe Youth Innovation Team of Shaanxi Universities。
文摘In-space 3D printing is transforming the manufacturing paradigm of space structures from ground-based production to in-situ space manufacturing,effectively addressing the challenges of high costs,long response times,and structural size limitations associated with traditional rocket launches.This technology enables rapid on-orbit emergency repairs and significantly expands the geometric dimensions of space structures.High-performance polymers and their composites are widely used in in-space 3D printing,yet their implementation faces complex challenges posed by extreme space environmental conditions and limited energy or resources.This paper reviews the state-of-the-art in 3D printing of polymer and composites for on-orbit structure manufacturing.Based on existing research activities,the review focuses on three key aspects including the impact of extreme space environments on forming process and performance,innovative design and manufacturing methods for space structures,and on-orbit recycling and remanufacturing of raw materials.Some experiments that have already been conducted on-orbit and simulated experiments completed on the ground are systematically analyzed to provide a more comprehensive understanding of the constraints and objectives for on-orbit structure manufacturing.Furthermore,several perspectives requiring further research in future are proposed to facilitate the development of new in-space 3D printing technologies and space structures,thereby supporting increasingly advanced space exploration activities.