期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Tomographic inversion of OBS converted shear waves:case study of profile EW6 in the Dongsha area
1
作者 Genggeng Wen Kuiyuan Wan +5 位作者 Shaohong Xia xiuwei ye Huilong Xu Chaoyan Fan Jinghe Cao Shunshan Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第8期13-25,共13页
Studies of converted S-wave data recorded on the ocean bottom seismometer(OBS)allow for the estimation of crustal S-wave velocity,from which is further derived the Vp/Vs ratio to constrain the crustal lithology and ge... Studies of converted S-wave data recorded on the ocean bottom seismometer(OBS)allow for the estimation of crustal S-wave velocity,from which is further derived the Vp/Vs ratio to constrain the crustal lithology and geophysical properties.Constructing a precise S-wave velocity model is important for deep structural research,and inversion of converted S-waves provides a potential solution.However,the inversion of the converted S-wave remains a weakness because of the complexity of the seismic ray path and the inconsistent conversion interface.In this study,we introduced two travel time correction methods for the S-wave velocity inversion and imaged different S-wave velocity structures in accordance with the corresponding corrected S-wave phases using seismic data of profile EW6 in the northeastern South China Sea(SCS).The two inversion models show a similar trend in velocities,and the velocity difference is<0.15 km/s(mostly in the range of 0–0.1 km/s),indicating the accuracy of the two travel time correction methods and the reliability of the inversion results.According to simulations of seismic ray tracing based on different models,the velocity of sediments is the primary influencing factor in ray tracing for S-wave phases.If the sedimentary layer has high velocities,the near offset crustal S-wave refractions cannot be traced.In contrast,the ray tracing of Moho S-wave reflections was not significantly impacted by the velocity of the sediments.The two travel time correction methods have their own advantages,and the application of different approaches is based on additional requirements.These works provide an important reference for future improvements in converted S-wave research. 展开更多
关键词 converted S-wave S-wave velocity structure INVERSION ocean bottom seismometer northeastern South China Sea
在线阅读 下载PDF
Interpretation of the west segment of the coastal fault zone in the coastal region of South China based on the gravity data 被引量:2
2
作者 Lisi Bi Zhenhuan Ren +2 位作者 xiuwei ye Tianyou Liu Jihua Qiao 《Geodesy and Geodynamics》 2018年第2期142-150,共9页
By systemic processing, comprehensive analysis, and interpretation of gravity data, we confirmed the existence of the west segment of the coastal fault zone(west of Yangjiang to Beibu Bay) in the coastal region of Sou... By systemic processing, comprehensive analysis, and interpretation of gravity data, we confirmed the existence of the west segment of the coastal fault zone(west of Yangjiang to Beibu Bay) in the coastal region of South China. This showed an apparent high gravity gradient in the NEE direction, and worse linearity and less compactness than that in the Pearl River month. This also revealed a relatively large curvature and a complicated gravity structure. In the finding images processed by the gravity data system, each fault was well reflected and primarily characterized by isolines or thick black stripes with a cutting depth greater than 30 km. Though mutually cut by NW-trending and NE-trending faults, the apparent NEE stripe-shaped structure of the west segment of the coastal fault zone remained unchanged,with good continuity and an activity strength higher than that of NW and NE-trending faults. Moreover,we determined that the west segment of the coastal fault zone is the major seismogenic structure responsible for strong earthquakes in the coastal region in the border area of Guangdong, Guangxi, and Hainan. 展开更多
关键词 Coastal region of South China West segment of the coastal fault zone Gravity data Seismogenic structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部