Sc and Y are key rare earth elements and are widely used in lamp phosphors,lasers and high-performance alloys.However,highly efficient extraction and separation of Sc^(3+) and Y^(3+) is laborious,harmful,slow,and cost...Sc and Y are key rare earth elements and are widely used in lamp phosphors,lasers and high-performance alloys.However,highly efficient extraction and separation of Sc^(3+) and Y^(3+) is laborious,harmful,slow,and costly,strongly necessitating more efficient extraction and separation techniques.Here,we produced hydrated Sc^(3+)-and hydrated Y^(3+)-controlled graphene oxide(GO) membranes and find that both hydrated cations were completely self-rejected by the membrane.By combining this selfrejection effect of the larger hydrated Y^(3+)-controlled GO membrane and the rapid passage of the membrane through the smaller hydrated Sc^(3+),we proposed a strategy to separate Sc^(3+) and Y^(3+) by using a hydrated Y^(3+)-controlled GO membrane.The experimental results show that the permeation rate of Sc^(3+) exceeds that of Y^(3+) when the separation factor reaches 4.02,which can be attributed to the interlayer sieving effects of the GO membrane.Our finding illustrates the use of a forward osmosis process with a GO membrane for the efficient separation of Sc^(3+) and Y^(3+) by interlayer sieving,which provides a new effective and eco-friendly method for the separation of rare earth elements.展开更多
1.Introduction Magnesium oxide(MgO)has attracted considerable attention in recent years due to its economic viability,excellent biocompatibil-ity,chemical stability,and non-toxic,odorless nature[1,2].These inherent pr...1.Introduction Magnesium oxide(MgO)has attracted considerable attention in recent years due to its economic viability,excellent biocompatibil-ity,chemical stability,and non-toxic,odorless nature[1,2].These inherent properties position it as a promising candidate for various applications.展开更多
Layered double hydroxides(LDHs)have been shown to be effective adsorbents for boron.However,solid-liquid separation is still a problem when separating boron from industrial radioactive waste liquid.In this research,th...Layered double hydroxides(LDHs)have been shown to be effective adsorbents for boron.However,solid-liquid separation is still a problem when separating boron from industrial radioactive waste liquid.In this research,three types of Mg-Al-LDHs including Mg-Al-LDH(NO_(3)^(-)),Mg-Al-LDH(Cl^(-))and Mg-Al-LDH(SO_(4)^(2-))were applied to adsorb boron,and moreover sodium dodecylbenzenesulfonate(SDBS)was used to float the LDH particles from aqueous solution after boron adsorption.The results showed that 60 min was sufficient for the equilibrium adsorption of the three LDHs.The boron adsorption capacity of three LDHs was determined as follows:Mg-Al-LDH(NO_(3)^(-))>Mg-Al-LDH(Cl^(-))>Mg-Al-LDH(SO_(4)^(2-)),and was 2.0,0.98 and 0.2 mmol·g^(-1),each ranging from 0 to 80 mmol·L^(-1)with the initial boron concentration.The efficiency of boron removal by Mg-Al-LDH(NO_(3)^(-))and SDBS can reach up to 89.7%.Furthermore,the boron flotation mechanism of SDBS and LDHs has been studied,since SDBS as a flotation agent can react with LDHs and penetrate into the interlayer of LDHs in addition to electrostatic attraction.Therefore,LDHs in solution can be floated onto the foam layer to be separated from the solution,and the clarified solution was obtained.The method is simple and promising for boron removal from aqueous solution.展开更多
基金Project supported by the National Natural Science Foundation of China (U1932123,12105166,22065017,22163003)the National Science Fund for Outstanding Young Scholars (11722548)+1 种基金the Jiangxi Provincial Natural Science Foundation (20224BAB214019,20232BAB204024,20232BAB203024)Science and Technology Project of Jiangxi Provincial Department of Education(GJJ2201937)。
文摘Sc and Y are key rare earth elements and are widely used in lamp phosphors,lasers and high-performance alloys.However,highly efficient extraction and separation of Sc^(3+) and Y^(3+) is laborious,harmful,slow,and costly,strongly necessitating more efficient extraction and separation techniques.Here,we produced hydrated Sc^(3+)-and hydrated Y^(3+)-controlled graphene oxide(GO) membranes and find that both hydrated cations were completely self-rejected by the membrane.By combining this selfrejection effect of the larger hydrated Y^(3+)-controlled GO membrane and the rapid passage of the membrane through the smaller hydrated Sc^(3+),we proposed a strategy to separate Sc^(3+) and Y^(3+) by using a hydrated Y^(3+)-controlled GO membrane.The experimental results show that the permeation rate of Sc^(3+) exceeds that of Y^(3+) when the separation factor reaches 4.02,which can be attributed to the interlayer sieving effects of the GO membrane.Our finding illustrates the use of a forward osmosis process with a GO membrane for the efficient separation of Sc^(3+) and Y^(3+) by interlayer sieving,which provides a new effective and eco-friendly method for the separation of rare earth elements.
基金financially supported by the National Natural Science Foundation of China(11475041,U21A20323)Kunlun Talent Program of Qinghai Province,Qinghai Provincial Science and Technology Project(2024-QY-203)Sci-Tech Project of Qinghai Salt Lake Industry Co.,Ltd.(E141GH01).
文摘1.Introduction Magnesium oxide(MgO)has attracted considerable attention in recent years due to its economic viability,excellent biocompatibil-ity,chemical stability,and non-toxic,odorless nature[1,2].These inherent properties position it as a promising candidate for various applications.
基金financially supported by the National Natural Science Foundation of China(U20A20150)the National Key Research and Development Program of China(2018YFC1903802)+1 种基金the Youth Scientific Research Fund of Qinghai University(2022QGY-4)the Kunlun Talent Program of Qinghai Province。
文摘Layered double hydroxides(LDHs)have been shown to be effective adsorbents for boron.However,solid-liquid separation is still a problem when separating boron from industrial radioactive waste liquid.In this research,three types of Mg-Al-LDHs including Mg-Al-LDH(NO_(3)^(-)),Mg-Al-LDH(Cl^(-))and Mg-Al-LDH(SO_(4)^(2-))were applied to adsorb boron,and moreover sodium dodecylbenzenesulfonate(SDBS)was used to float the LDH particles from aqueous solution after boron adsorption.The results showed that 60 min was sufficient for the equilibrium adsorption of the three LDHs.The boron adsorption capacity of three LDHs was determined as follows:Mg-Al-LDH(NO_(3)^(-))>Mg-Al-LDH(Cl^(-))>Mg-Al-LDH(SO_(4)^(2-)),and was 2.0,0.98 and 0.2 mmol·g^(-1),each ranging from 0 to 80 mmol·L^(-1)with the initial boron concentration.The efficiency of boron removal by Mg-Al-LDH(NO_(3)^(-))and SDBS can reach up to 89.7%.Furthermore,the boron flotation mechanism of SDBS and LDHs has been studied,since SDBS as a flotation agent can react with LDHs and penetrate into the interlayer of LDHs in addition to electrostatic attraction.Therefore,LDHs in solution can be floated onto the foam layer to be separated from the solution,and the clarified solution was obtained.The method is simple and promising for boron removal from aqueous solution.