期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Synergetic Control of Li^(+)Transport Ability and Solid Electrolyte Interphase by Boron-Rich Hexagonal Skeleton Structured All-Solid-State Polymer Electrolyte
1
作者 Yanan Li Shunchao Ma +7 位作者 Yuehua Zhao Silin Chen Tingting Xiao Hongxing Yin Huiyu Song xiumei pan Lina Cong Haiming Xie 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期154-163,共10页
High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incom... High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incomplete solid electrolyte interphase(SEI)formation on the Li anode because it suffers from the absence of appropriate inorganic components entirely derived from anions decomposition.Herein,a boron-rich hexagonal polymer structured all-solid-state polymer electrolyte(BSPE+10%LiBOB)with regulated intermolecular interaction is proposed to trade off a high Li^(+)transference number against stable SEI properties.The Li^(+)transference number of the as-prepared electrolyte is increased from 0.23 to 0.83 owing to the boron-rich cross-linker(BC)addition.More intriguingly,for the first time,the experiments combined with theoretical calculation results reveal that BOB^(-)anions have stronger interaction with B atoms in polymer chain than TFSI^(-),which significantly induce the TFSI^(-)decomposition and consequently increase the amount of LiF and Li3N in the SEI layer.Eventually,a LiFePO_(4)|BSPE+10%LiBOBlLi cell retains 96.7%after 400 cycles while the cell without BC-resisted electrolyte only retains 40.8%.BSPE+10%LiBOB also facilitates stable electrochemical cycling of solid-state Li-S cells.This study blazes a new trail in controlling the Li^(+)transport ability and SEI properties,synergistically. 展开更多
关键词 all-solid-state electrolyte boron-rich polymer lithium metal batteries lithium-ion transference number solid electrolyte interphase layer
在线阅读 下载PDF
“Polymer-in-ceramic” based poly(ε-caprolactone)/ceramic composite electrolyte for all-solid-state batteries 被引量:7
2
作者 Bohao Zhang Yulong Liu +7 位作者 Jia Liu Liqun Sun Lina Cong Fang Fu Alain Mauger Christian M.Julien Haiming Xie xiumei pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期318-325,I0010,共9页
Inspired by the concept of "polymer-in-ceramic",a composite poly(ε-caprolactone)(PCL)/ceramic containing LiTFSI is prepared and investigated as a solid electrolyte for all-solid-state batteries.The composit... Inspired by the concept of "polymer-in-ceramic",a composite poly(ε-caprolactone)(PCL)/ceramic containing LiTFSI is prepared and investigated as a solid electrolyte for all-solid-state batteries.The composite with the optimum concentration of 45 wt% LiTFSI and 75 wt% Li1.5Al0.5Ge1.5(PO4)3(LAGP,NASICON-type structure) exhibits a high ionic conductivity(σi=0.17 mS cm-1) at 30℃,a transference number of 0.30,and is stable up to 5.0 V.The composite electrolyte is a flexible and self-standing membrane.Solid-state LiFePO4//Li batteries with this composite electrolyte demonstrate excellent cycling stability with high discharge capacity of 157 mA h g-1,high capacity retention of 96% and coulombic efficiency of 98.5% after 130 cycles at 30℃ and 0.1 C rate.These electrochemical properties are better than other PCL-based allsolid-lithium batteries,and validate the concept of "polymer-in-ceramic" by avoiding the drawback of lower conductivity in prior "polymer-in-ceramic" electrolyte at high concentration of the ceramic. 展开更多
关键词 All-solid-state electrolyte Polymer-in-ceramic Poly(ε-caprolactone)/LAGP composite High fluorinated SEI layer
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部