Environmental catalysis has drawn a great deal ofattention due to its clean ways to produce useful chemicals or carry out some chemical processes.Photocatalysis and electrocatalysis play important roles in these field...Environmental catalysis has drawn a great deal ofattention due to its clean ways to produce useful chemicals or carry out some chemical processes.Photocatalysis and electrocatalysis play important roles in these fields.They can decompose and remove organic pollutants from the aqueous environment,and prepare some fine chemicals.Moreover,they also can carry out some important reactions,such as 02 reduction reaction(ORR),O2 evolution reaction(OER),H2 evolution reaction(HER),CO2 reduction reaction(C02 RR),and N2 fixation(NRR).For catalytic reactions,it is the key to develop high-performance catalysts to meet the demand fortargeted reactions.In recentyears,two-dimensional(2 D) materials have attracted great interest in environmental catalysis due to their unique layered structures,which offer us to make use of their electronic and structural characteristics.Great progress has been made so far,including graphene,black phosphorus,oxides,layered double hydroxides(LDHs),chalcogenides,bismuth-based layered compounds,MXenes,metal organic frameworks(MOFs),covalent organic frameworks(COFs),and others.This content drives us to invite many famous groups in these fields to write the roadmap on two-dimensional nanomaterials for environmental catalysis.We hope that this roadmap can give the useful guidance to researchers in future researches,and provide the research directions.展开更多
Accumulating evidence has indicated that long non-coding RNAs(lncRNAs)play critical roles in the development and progression of cancers,including esophageal squamous cell carcinoma(ESCC).However,the mechanisms of lncR...Accumulating evidence has indicated that long non-coding RNAs(lncRNAs)play critical roles in the development and progression of cancers,including esophageal squamous cell carcinoma(ESCC).However,the mechanisms of lncRNAs in ESCC are still incompletely understood and therapeutic attempts for in vivo targeting cancer-associated lncRNA remain a challenge.By RNA-sequencing analysis,we identified that LLNLR-299G3.1 was a novel ESCC-associated lncRNA.LLNLR-299G3.1 was up-regulated in ESCC tissues and cells and promoted ESCC cell proliferation and invasion.Silencing of LLNLR-299G3.1 with ASO(antisense oligonucleotide)resulted in opposite effects.Mechanistically,LLNLR-299G3.1 bound to cancerassociated RNA binding proteins and regulated the expression of cancer-related genes,including OSM,TNFRSF4,HRH3,and SSTR3.ChIRP-seq(chromatin isolation by RNA purification and sequencing)revealed that these genes contained enriched chromatin binding sites for LLNLR-299G3.1.Rescue experiments confirmed that the effects of LLNLR-299G3.1 on ESCC cell proliferation were dependent on interaction with HRH3 and TNFRSF4.Therapeutically,intravenous delivery of placental chondroitin sulfate A binding peptide-coated nanoparticles containing antisense oligonucleotide(pICSA-BP-ANPs)strongly inhibited ESCC tumor growth and significantly improved animal survival in vivo.Overall,our results suggest that LLNLR-299G3.1 promotes ESCC malignancy through regulating gene-chromatin interactions and targeting ESCC by pICSA-BP-ANPs may be an effective strategy for the treatment of lncRNA-associated ESCC.展开更多
The thermal conduction of suspended few-layer hexagonal boron nitride (h-BN) sheets was experimentally investigated using a noncontact micro-Raman spectroscopy method. The first-order temperature coefficients for mo...The thermal conduction of suspended few-layer hexagonal boron nitride (h-BN) sheets was experimentally investigated using a noncontact micro-Raman spectroscopy method. The first-order temperature coefficients for monolayer (1L), bilayer (2L) and nine-layer (9L) h-BN sheets were measured to be -(3.41 ± 0.12)× 10-2, -(3.15 ± 0.14) × 10-2 and -(3.78 ±0.16)× 10-2 cm-1.K-1, respectively. The room-temperature thermal conductivity of few-layer h-BN sheets was found to be in the range from 227 to 280 W.m-1-K-1, which is comparable to that of bulk h-BN, indicating their potential use as important components to solve heat dissipation problems in thermal management configurations.展开更多
We report a novel chemical vapor deposition (CVD) based strategy to synthesize carbon-coated Fe203 nanoparticles dispersed on graphene sheets (Fe2Og@C@G). Graphene sheets with high surface area and aspect ratio ar...We report a novel chemical vapor deposition (CVD) based strategy to synthesize carbon-coated Fe203 nanoparticles dispersed on graphene sheets (Fe2Og@C@G). Graphene sheets with high surface area and aspect ratio are chosen as space restrictor to prevent the sintering and aggregation of nanoparticles during high temperature treatments (800 ℃). In the resulting nanocomposite, each individual Fe2O3 nanoparticle (5 to 20 nm in diameter) is uniformly coated with a continuous and thin (two to five layers) graphitic carbon shell. Further, the core-shell nanoparticles are evenly distributed on graphene sheets. When used as anode materials for lithium ion batteries, the conductive-additive-free Fe2OB@C@G electrode shows outstanding Li+ storage properties with large reversible specific capacity (864 mAh/g after 100 cycles), excellent cyclic stability (120% retention after 100 cycles at 100 mA/g), high Coulombic efficiency (-99%), and good rate capability.展开更多
Recent advancements in luminescent fibers are transforming textiles by inte-grating lighting and display functionalities into fabrics for applications such as health monitoring,dynamic displays,and adaptive camouflage...Recent advancements in luminescent fibers are transforming textiles by inte-grating lighting and display functionalities into fabrics for applications such as health monitoring,dynamic displays,and adaptive camouflage.Active electro-luminescent fibers,powered by electric fields,enable tunable light emission,while passive photoluminescent fibers rely on photoluminescence or tribolumi-nescence to emit light.Although challenges remain in achieving uniform lumi-nescence and ensuring durability,breakthroughs in materials science,structural engineering,and system integration are addressing these issues.Innovations such as chipless electroluminescent textiles and thermally drawn photoluminescent fibers highlight significant progress,pointing toward a future where clothing fa-cilitates health monitoring and dynamic interaction,advancing natural human–machine interfaces.展开更多
基金the National Natural Science Foundation of China (Nos. 21603129 & 20871167)National Natural Science Foundation of Shanxi Province (No. 201601D202021)the Foundation of State Key Laboratory of Coal Conversion (No. J1819-903) for the financial support
文摘Environmental catalysis has drawn a great deal ofattention due to its clean ways to produce useful chemicals or carry out some chemical processes.Photocatalysis and electrocatalysis play important roles in these fields.They can decompose and remove organic pollutants from the aqueous environment,and prepare some fine chemicals.Moreover,they also can carry out some important reactions,such as 02 reduction reaction(ORR),O2 evolution reaction(OER),H2 evolution reaction(HER),CO2 reduction reaction(C02 RR),and N2 fixation(NRR).For catalytic reactions,it is the key to develop high-performance catalysts to meet the demand fortargeted reactions.In recentyears,two-dimensional(2 D) materials have attracted great interest in environmental catalysis due to their unique layered structures,which offer us to make use of their electronic and structural characteristics.Great progress has been made so far,including graphene,black phosphorus,oxides,layered double hydroxides(LDHs),chalcogenides,bismuth-based layered compounds,MXenes,metal organic frameworks(MOFs),covalent organic frameworks(COFs),and others.This content drives us to invite many famous groups in these fields to write the roadmap on two-dimensional nanomaterials for environmental catalysis.We hope that this roadmap can give the useful guidance to researchers in future researches,and provide the research directions.
基金This study was approved by the Medical Ethics Committee of Shenzhen University Health Science Center(protocol no.2016001).
文摘Accumulating evidence has indicated that long non-coding RNAs(lncRNAs)play critical roles in the development and progression of cancers,including esophageal squamous cell carcinoma(ESCC).However,the mechanisms of lncRNAs in ESCC are still incompletely understood and therapeutic attempts for in vivo targeting cancer-associated lncRNA remain a challenge.By RNA-sequencing analysis,we identified that LLNLR-299G3.1 was a novel ESCC-associated lncRNA.LLNLR-299G3.1 was up-regulated in ESCC tissues and cells and promoted ESCC cell proliferation and invasion.Silencing of LLNLR-299G3.1 with ASO(antisense oligonucleotide)resulted in opposite effects.Mechanistically,LLNLR-299G3.1 bound to cancerassociated RNA binding proteins and regulated the expression of cancer-related genes,including OSM,TNFRSF4,HRH3,and SSTR3.ChIRP-seq(chromatin isolation by RNA purification and sequencing)revealed that these genes contained enriched chromatin binding sites for LLNLR-299G3.1.Rescue experiments confirmed that the effects of LLNLR-299G3.1 on ESCC cell proliferation were dependent on interaction with HRH3 and TNFRSF4.Therapeutically,intravenous delivery of placental chondroitin sulfate A binding peptide-coated nanoparticles containing antisense oligonucleotide(pICSA-BP-ANPs)strongly inhibited ESCC tumor growth and significantly improved animal survival in vivo.Overall,our results suggest that LLNLR-299G3.1 promotes ESCC malignancy through regulating gene-chromatin interactions and targeting ESCC by pICSA-BP-ANPs may be an effective strategy for the treatment of lncRNA-associated ESCC.
文摘The thermal conduction of suspended few-layer hexagonal boron nitride (h-BN) sheets was experimentally investigated using a noncontact micro-Raman spectroscopy method. The first-order temperature coefficients for monolayer (1L), bilayer (2L) and nine-layer (9L) h-BN sheets were measured to be -(3.41 ± 0.12)× 10-2, -(3.15 ± 0.14) × 10-2 and -(3.78 ±0.16)× 10-2 cm-1.K-1, respectively. The room-temperature thermal conductivity of few-layer h-BN sheets was found to be in the range from 227 to 280 W.m-1-K-1, which is comparable to that of bulk h-BN, indicating their potential use as important components to solve heat dissipation problems in thermal management configurations.
文摘We report a novel chemical vapor deposition (CVD) based strategy to synthesize carbon-coated Fe203 nanoparticles dispersed on graphene sheets (Fe2Og@C@G). Graphene sheets with high surface area and aspect ratio are chosen as space restrictor to prevent the sintering and aggregation of nanoparticles during high temperature treatments (800 ℃). In the resulting nanocomposite, each individual Fe2O3 nanoparticle (5 to 20 nm in diameter) is uniformly coated with a continuous and thin (two to five layers) graphitic carbon shell. Further, the core-shell nanoparticles are evenly distributed on graphene sheets. When used as anode materials for lithium ion batteries, the conductive-additive-free Fe2OB@C@G electrode shows outstanding Li+ storage properties with large reversible specific capacity (864 mAh/g after 100 cycles), excellent cyclic stability (120% retention after 100 cycles at 100 mA/g), high Coulombic efficiency (-99%), and good rate capability.
基金the Vernroy Makoto Watanabe Excellence in Research Award at the UCLA Samueli School of Engineering,the Office of Naval Research Young Investigator Award(No.N00014-24-1-2065)the National Institutes of Health Grant(No.R01 CA287326)+5 种基金the National Science Foundation Grant(No.2425858)the American Heart Association Innovative Project Award(No.23IPA1054908)the American Heart Association Transformational Project Award(No.23TPA1141360)the American Heart Association’s Second Century Early Faculty Independence Award(No.23SCEFIA1157587)the Brain&Behavior Research Foundation Young Investigator Grant(No.0944)the NIH National Center for Advancing Translational Science UCLA CTSI(No.KL2TR001882).
文摘Recent advancements in luminescent fibers are transforming textiles by inte-grating lighting and display functionalities into fabrics for applications such as health monitoring,dynamic displays,and adaptive camouflage.Active electro-luminescent fibers,powered by electric fields,enable tunable light emission,while passive photoluminescent fibers rely on photoluminescence or tribolumi-nescence to emit light.Although challenges remain in achieving uniform lumi-nescence and ensuring durability,breakthroughs in materials science,structural engineering,and system integration are addressing these issues.Innovations such as chipless electroluminescent textiles and thermally drawn photoluminescent fibers highlight significant progress,pointing toward a future where clothing fa-cilitates health monitoring and dynamic interaction,advancing natural human–machine interfaces.