In recent years, the research advancements have high-lighted the critical role of the A-site cation in determining the optoelectronic and physicochemical properties of organicinorganic lead halide perovskites. Mixed-c...In recent years, the research advancements have high-lighted the critical role of the A-site cation in determining the optoelectronic and physicochemical properties of organicinorganic lead halide perovskites. Mixed-cation perovskites(MCPs) have been extensively used as absorber thin films in perovskite solar cells(PSCs), achieving high power conversion efficiencies(PCE) over 26%^([1, 2]).展开更多
Wide-bandgap(WB)mixed-halide perovskite solar cells(PSCs)play a crucial role in perovskite-based tandem solar cells(TSCs),enabling them to exceed the Shockley-Queisser limits of single-junction solar cells.Nonetheless...Wide-bandgap(WB)mixed-halide perovskite solar cells(PSCs)play a crucial role in perovskite-based tandem solar cells(TSCs),enabling them to exceed the Shockley-Queisser limits of single-junction solar cells.Nonetheless,the lack of stability in WB perovskite films due to photoinduced phase segregation undermines the stability of WB PSCs and their TSCs,thus impeding the commercialization of perovskite-based TSCs.Many efforts have been made to suppress photoinduced phase segregation in WB perovskite films and significant progresses have been obtained.In this review,we elaborate the mechanisms behind photoinduced phase segregation and its impact on the photovoltaic performance and stability of devices.The importance role of advanced characterization techniques in confirming the photoinduced phase segregation are comprehensively summarized.Beyond that,the effective strategies to alleviate photoinduced phase segregation in WB mixed halide PSCs are systematically assessed.Finally,the prospects for developing highly efficient and stable WB PSCs in tandem application are also presented.展开更多
Perovskite solar cells(PSCs) have stood out from many photovoltaic technologies due to their flexibility,cost-effectiveness and high-power conversion efficiency(PCE). Nevertheless, the further development of PSCs is g...Perovskite solar cells(PSCs) have stood out from many photovoltaic technologies due to their flexibility,cost-effectiveness and high-power conversion efficiency(PCE). Nevertheless, the further development of PSCs is greatly hindered by the trap-induced non-radiative recombination losses and poor long-term work stability. In the past decade, the huge advancements have been obtained on suppressing nonradiative recombination and enhancing device durability. Among them, the multisite ligands(MSLs) engineering plays a crucial role in precise control and directional modification of functional layers and interfaces,which contributes to markedly increased PCE and lifetimes of PSCs. In view of this, this review summarizes the advances of MSLs in PSCs. From the perspective of functional groups and chemical interaction,the modulation mechanisms of properties of different functional layers and interfaces and device performance via various MSLs are deeply investigated and revealed. Finally, the prospects for the application and development direction of MSLs in PSCs are legitimately proposed.展开更多
In the past 10 years,perovskite solar cells(PSCs)have undergone extremely rapid development,with a record certified power conversion efficiency(PCE)of 26.7%,which is very close to the limit efficiency.However,the inhe...In the past 10 years,perovskite solar cells(PSCs)have undergone extremely rapid development,with a record certified power conversion efficiency(PCE)of 26.7%,which is very close to the limit efficiency.However,the inherent instability caused by ion migration impedes the realization of long-term operationally stable PSCs.In this review,the types and mechanisms of ion migration occurring in various functional layers of negative-intrinsic-positive(n-i-p)PSCs are summarized.Additionally,methods of suppressing ion migration are systematically discussed.Finally,the prospects of current challenges and future development directions are proposed to advance the achievement of high-performance regular PSCs with high stability and PCE.展开更多
Flotation indexes gradually decrease with the increase of cycle time of the backwater in bauxite floatation,and discharge of backwater brings environmental risk.In this study,methods such as Fenton-oxidation,adsorptio...Flotation indexes gradually decrease with the increase of cycle time of the backwater in bauxite floatation,and discharge of backwater brings environmental risk.In this study,methods such as Fenton-oxidation,adsorption and coagulation were used in the treatment of backwater,the flotation indexes were checked after backwater treatments,and Box-Behnken design(BBD)was used in the optimization of the main operating parameters.The results reveal that flotation indexes are effectively improved after coagulation treatment by polyaluminum ferric chloride(PAFC).The optimum parameters predicted by BBD are pH 7.55,1.09 g/L PAFC dosage and temperature of 25℃.Under these optimum conditions,a maximum recovery of Al2O3 of 82.83%and a minimum A/S of 1.30 of tailings are gained,while the deviations are less than 3%from the predicted values.These findings encourage the application of BBD for the optimization of critical parameters in backwater treatment.展开更多
The photovoltaic(PV)market is currently dominated by silicon based solar cells.However technological diversification is essential to promote competition,which is the driving force for technological growth.Historically...The photovoltaic(PV)market is currently dominated by silicon based solar cells.However technological diversification is essential to promote competition,which is the driving force for technological growth.Historically,the choice of PV materials has been limited to the three-dimensional(3D)compounds with a high crystal symmetry and direct band gap.However,to meet the strict demands for sustainable PV applications,material space has been expanded beyond 3D compounds.In this perspective we discuss the potential of low-dimensional materials(2D,1D)for application in PVs.We present unique features of low-dimensional materials in context of their suitability in the solar cells.The band gap,absorption,carrier dynamics,mobility,defects,surface states and growth kinetics are discussed and compared to 3D counterparts,providing a comprehensive view of prospects of low-dimensional materials.Structural dimensionality leads to a highly anisotropic carrier transport,complex defect chemistry and peculiar growth dynamics.By providing fundamental insights into these challenges we aim to deepen the understanding of low-dimensional materials and expand the scope of their application.Finally,we discuss the current research status and development trend of solar cell devices made of low-dimensional materials.展开更多
The past decade has witnessed the rapid development of perovskite solar cells,with their power conversion efficiency increasing from an initial 3.8%to over 26%,approaching the Shockley-Queisser(S-Q)limit for single-ju...The past decade has witnessed the rapid development of perovskite solar cells,with their power conversion efficiency increasing from an initial 3.8%to over 26%,approaching the Shockley-Queisser(S-Q)limit for single-junction solar cells.Multijunction solar cells have garnered significant attention due to their tremendous potential to surpass the S-Q limit by reducing thermalization losses and wide light harvesting.The wide bandgap tunability of metal halide perovskite materials makes them highly suitable for sub-cells in tandem solar cells(TSCs).Currently,LONGi Green Energy Technology Co.,Ltd.in China has set a world record efficiency of 34.6% based on a dual-junction perovskitesilicon TSCs,far surpassing the single-junction efficiencies of each sub-cell.Consequently,perovskite based TSCs are widely regarded as the next-generation photovoltaic products in the solar industry.Despite the significant efficiency improvements,several challenges still impede the commercial application of perovskite based TSCs,such as the instability of perovskite materials and difficulties in achieving large-scale production.This review summarizes the progresses and optimization strategies of perovskite based TSCs.This review also identifies the critical issues hindering multijunction solar cells.Finally,the potential solutions to address these challenges are proposed to advance the development of perovskite based TSCs.展开更多
The random fiber laser(RFL)has been an excellent platform for exploring novel optical dynamics and developing new functional optoelectronic devices.However,it is challenging for RFLs to regulate their emission into re...The random fiber laser(RFL)has been an excellent platform for exploring novel optical dynamics and developing new functional optoelectronic devices.However,it is challenging for RFLs to regulate their emission into regular narrow pulses due to their intrinsic randomness.Here,through engineering the laser configuration(cavity Q value,gain distribution and nonlinearity),we demonstrate that narrow(~2.5 ns)pulses with record peak power as high as 64.3 kW are achieved from a self-Q-switched random ytterbium fiber laser.Based on high intracavity intensity and efficient interplay of multiple nonlinear processes(stimulated Brillouin scattering,stimulated Raman scattering and four-wave mixing),an over-one-octave visible-near-infrared(NIR)Raman-frequency comb is generated from single-mode silica fibers for the first time.After spectrally filtering the Raman peaks,wavelength-tunable pulses with durations of several hundreds of picoseconds are obtained.Such a high-peak-power random Q-switched fiber laser and wide frequency comb in the visible-NIR region can find applications in diverse areas,such as spectroscopy,biomedical imaging and quantum information.展开更多
基金financially supported by the National Natural Science Foundation of China (52462032, 62274018, 52462031)Natural Science Foundation of Yunnan Province (202501AT070353, 202101BE070001-049)+2 种基金the Xinjiang Construction Corps Key Areas of Science and Technology Research Project (2023AB029)the Tianchi Talent Program of Xinjiang Uygur Autonomous Region (2024, Jiangzhao Chen)the Key Project of Chongqing Overseas Students Returning to China Entrepreneurship and Innovation Support Plan (cx2023006)。
文摘In recent years, the research advancements have high-lighted the critical role of the A-site cation in determining the optoelectronic and physicochemical properties of organicinorganic lead halide perovskites. Mixed-cation perovskites(MCPs) have been extensively used as absorber thin films in perovskite solar cells(PSCs), achieving high power conversion efficiencies(PCE) over 26%^([1, 2]).
基金The Project of Hebei North University(Grant No.XJ2023041)the Natural Science Foundation of Hebei Province(Grant No.H2021405021)the S&T Program of Hebei(Grant No.V1623922326576)。
基金the National Natural Science Foundation of China(Grant No.62274018)the Xinjiang Construction Corps Key Areas of Science and Technology Research Project(Grant No.2023AB029)the Key Project of Chongqing Overseas Students Returning to China Entrepreneurship and Innovation Support Plan(Grant No.cx2023006).
文摘Wide-bandgap(WB)mixed-halide perovskite solar cells(PSCs)play a crucial role in perovskite-based tandem solar cells(TSCs),enabling them to exceed the Shockley-Queisser limits of single-junction solar cells.Nonetheless,the lack of stability in WB perovskite films due to photoinduced phase segregation undermines the stability of WB PSCs and their TSCs,thus impeding the commercialization of perovskite-based TSCs.Many efforts have been made to suppress photoinduced phase segregation in WB perovskite films and significant progresses have been obtained.In this review,we elaborate the mechanisms behind photoinduced phase segregation and its impact on the photovoltaic performance and stability of devices.The importance role of advanced characterization techniques in confirming the photoinduced phase segregation are comprehensively summarized.Beyond that,the effective strategies to alleviate photoinduced phase segregation in WB mixed halide PSCs are systematically assessed.Finally,the prospects for developing highly efficient and stable WB PSCs in tandem application are also presented.
基金financially supported by the National Natural Science Foundation of China (62274018)the Xinjiang Construction Corps Key Areas of Science and Technology Research Project (2023AB029)the Key Project of Chongqing Overseas Students Returning to China Entrepreneurship and Innovation Support Plan (cx2023006)。
文摘Perovskite solar cells(PSCs) have stood out from many photovoltaic technologies due to their flexibility,cost-effectiveness and high-power conversion efficiency(PCE). Nevertheless, the further development of PSCs is greatly hindered by the trap-induced non-radiative recombination losses and poor long-term work stability. In the past decade, the huge advancements have been obtained on suppressing nonradiative recombination and enhancing device durability. Among them, the multisite ligands(MSLs) engineering plays a crucial role in precise control and directional modification of functional layers and interfaces,which contributes to markedly increased PCE and lifetimes of PSCs. In view of this, this review summarizes the advances of MSLs in PSCs. From the perspective of functional groups and chemical interaction,the modulation mechanisms of properties of different functional layers and interfaces and device performance via various MSLs are deeply investigated and revealed. Finally, the prospects for the application and development direction of MSLs in PSCs are legitimately proposed.
基金financially supported by the National Natural Sci-ence Foundation of China(62274018,52462031)the Xinjiang Construction Corps Key Areas of Science and Technology Research Project(2023AB029)+1 种基金the Tianchi Talent Program of Xinjiang Uygur Autonomous Region(2024,Jiangzhao Chen)the Key Project of Chongqing Overseas Students Returning to China Entrepreneurship and Innovation Support Plan(cx2023006).
文摘In the past 10 years,perovskite solar cells(PSCs)have undergone extremely rapid development,with a record certified power conversion efficiency(PCE)of 26.7%,which is very close to the limit efficiency.However,the inherent instability caused by ion migration impedes the realization of long-term operationally stable PSCs.In this review,the types and mechanisms of ion migration occurring in various functional layers of negative-intrinsic-positive(n-i-p)PSCs are summarized.Additionally,methods of suppressing ion migration are systematically discussed.Finally,the prospects of current challenges and future development directions are proposed to advance the achievement of high-performance regular PSCs with high stability and PCE.
基金Project(1053320170205)supported by the Research and Innovation Project of Graduate Students of Central South University,ChinaProject(502211704)supported by the Fundamental Research Funds for the Central Universities,China+3 种基金Project(SKL-SPM-201809)supported by the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals,ChinaProject(SKLAM005-2016)supported by the State Key Laboratory of Applied Microbiology Southern ChinaProjects(51320105006,51504106,51871250)supported by the National Natural Science Foundation of ChinaProject(2015FB204)supported by the Science and Technology Project of Yunnan Province,China
文摘Flotation indexes gradually decrease with the increase of cycle time of the backwater in bauxite floatation,and discharge of backwater brings environmental risk.In this study,methods such as Fenton-oxidation,adsorption and coagulation were used in the treatment of backwater,the flotation indexes were checked after backwater treatments,and Box-Behnken design(BBD)was used in the optimization of the main operating parameters.The results reveal that flotation indexes are effectively improved after coagulation treatment by polyaluminum ferric chloride(PAFC).The optimum parameters predicted by BBD are pH 7.55,1.09 g/L PAFC dosage and temperature of 25℃.Under these optimum conditions,a maximum recovery of Al2O3 of 82.83%and a minimum A/S of 1.30 of tailings are gained,while the deviations are less than 3%from the predicted values.These findings encourage the application of BBD for the optimization of critical parameters in backwater treatment.
基金supported by the National Natural Science Foundation of China(61725401,61904058,61904058)the National Key R&D Program of China(2016YFA0204000)+1 种基金China Postdoctoral Science Foundation Project(2019M662623)the National Postdoctoral Program for Innovative Talent(BX20190127).
文摘The photovoltaic(PV)market is currently dominated by silicon based solar cells.However technological diversification is essential to promote competition,which is the driving force for technological growth.Historically,the choice of PV materials has been limited to the three-dimensional(3D)compounds with a high crystal symmetry and direct band gap.However,to meet the strict demands for sustainable PV applications,material space has been expanded beyond 3D compounds.In this perspective we discuss the potential of low-dimensional materials(2D,1D)for application in PVs.We present unique features of low-dimensional materials in context of their suitability in the solar cells.The band gap,absorption,carrier dynamics,mobility,defects,surface states and growth kinetics are discussed and compared to 3D counterparts,providing a comprehensive view of prospects of low-dimensional materials.Structural dimensionality leads to a highly anisotropic carrier transport,complex defect chemistry and peculiar growth dynamics.By providing fundamental insights into these challenges we aim to deepen the understanding of low-dimensional materials and expand the scope of their application.Finally,we discuss the current research status and development trend of solar cell devices made of low-dimensional materials.
基金supported by the National Natural Science Foundation of China(62274018)the Xinjiang Construction Corps Key Areas of Science and Technology Research Project(2023AB029)the Key Project of Chongqing Overseas Students Returning to China Entrepreneurship and Innovation Support Plan(cx2023006).
文摘The past decade has witnessed the rapid development of perovskite solar cells,with their power conversion efficiency increasing from an initial 3.8%to over 26%,approaching the Shockley-Queisser(S-Q)limit for single-junction solar cells.Multijunction solar cells have garnered significant attention due to their tremendous potential to surpass the S-Q limit by reducing thermalization losses and wide light harvesting.The wide bandgap tunability of metal halide perovskite materials makes them highly suitable for sub-cells in tandem solar cells(TSCs).Currently,LONGi Green Energy Technology Co.,Ltd.in China has set a world record efficiency of 34.6% based on a dual-junction perovskitesilicon TSCs,far surpassing the single-junction efficiencies of each sub-cell.Consequently,perovskite based TSCs are widely regarded as the next-generation photovoltaic products in the solar industry.Despite the significant efficiency improvements,several challenges still impede the commercial application of perovskite based TSCs,such as the instability of perovskite materials and difficulties in achieving large-scale production.This review summarizes the progresses and optimization strategies of perovskite based TSCs.This review also identifies the critical issues hindering multijunction solar cells.Finally,the potential solutions to address these challenges are proposed to advance the development of perovskite based TSCs.
基金supported by the National Natural Science Foundation of China(No.61675129)the Natural Science Foundation of Shanghai(No.19ZR1427100)
文摘The random fiber laser(RFL)has been an excellent platform for exploring novel optical dynamics and developing new functional optoelectronic devices.However,it is challenging for RFLs to regulate their emission into regular narrow pulses due to their intrinsic randomness.Here,through engineering the laser configuration(cavity Q value,gain distribution and nonlinearity),we demonstrate that narrow(~2.5 ns)pulses with record peak power as high as 64.3 kW are achieved from a self-Q-switched random ytterbium fiber laser.Based on high intracavity intensity and efficient interplay of multiple nonlinear processes(stimulated Brillouin scattering,stimulated Raman scattering and four-wave mixing),an over-one-octave visible-near-infrared(NIR)Raman-frequency comb is generated from single-mode silica fibers for the first time.After spectrally filtering the Raman peaks,wavelength-tunable pulses with durations of several hundreds of picoseconds are obtained.Such a high-peak-power random Q-switched fiber laser and wide frequency comb in the visible-NIR region can find applications in diverse areas,such as spectroscopy,biomedical imaging and quantum information.