期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于内镜图像深度学习的鼻咽恶性肿瘤检测模型的建立与验证
1
作者 Chaofeng Li Bingzhong Jing +34 位作者 Liangru Ke Bin Li Weixiong Xia Caisheng He Chaonan Qian Chong Zhao Haiqiang Mai Mingyuan Chen Kajia Cao Haoyuan Mo Ling Guo Qiuyan Chen Linquan Tang Wenze Qiu Yahui Yu Hu Liang xinjun huang Guoying Liu Wangzhong Li Lin Wang Rui Sun Xiong Zou Shanshan Guo Peiyu huang Donghua Luo Fang Qiu Yishan Wu Yijun Hua Kuiyuan Liu Shuhui Lv Jingjing Miao Yanqun Xiang Ying Sun Xiang Guo Xing Lv 《癌症》 SCIE CAS CSCD 2019年第7期317-328,共12页
背景与目的由于鼻咽部解剖位置隐匿且腺体增生频发,活检时恶性肿瘤的阳性率较低,从而导致初诊时鼻咽恶性肿瘤确诊延时或漏诊。本文旨在建立一种人工智能工具——基于深度学习的内镜检查,来检测鼻咽恶性肿瘤。方法建立了一种基于内镜图... 背景与目的由于鼻咽部解剖位置隐匿且腺体增生频发,活检时恶性肿瘤的阳性率较低,从而导致初诊时鼻咽恶性肿瘤确诊延时或漏诊。本文旨在建立一种人工智能工具——基于深度学习的内镜检查,来检测鼻咽恶性肿瘤。方法建立了一种基于内镜图像的鼻咽恶性肿瘤检测模型(endoscopic imagesbased nasopharyngeal malignancies detection model,eNPM-DM),该模型由基于空间结构的全卷积网络构成,采用单独训练集和验证集对分类和分割进行微调。总共收集了28,966张合格图像。其中,自2008年1月1日至2016年12月31日,从7951例个体中获得了27,536张经活检证实的图像,按照7∶1∶2的比例随机分为训练、验证和测试集。此外,将2017年1月1日到2017年3月31日获得的1430张图像纳入预测集,用以对建立模型的性能与肿瘤专家的评价进行比较。以鼻咽镜图像为背景,对自动分割和专家手工分割进行比较,采用dice相似系数(dice similarity coefficient,DSC)评价eNPM-DM从鼻咽部内镜图像的背景中自动分割出恶性肿瘤区域的效率。结果所有图像经过病理组织学验证,包括正常对照5713(19.7%)例、鼻咽癌(nasopharyngeal carcinoma,NPC)19,107(66.0%)例、其他恶性肿瘤335(1.2%)例和3811(13.2%)例良性病变。在测试集中,eNPM-DM检测恶性肿瘤的总准确率达88.7%[95%置信区间(confidence interval,CI):87.8%–89.5%]。在预测比较阶段,eNPM-DM表现优于专家:总准确率分别为88.0%(95%CI:86.1%–89.6%)和80.5%(95%CI:77.0%–84.0%)。eNPM-DM耗时更短(40 s vs. 110.0±5.8 min),且从背景中自动分割出鼻咽恶性肿瘤区域方面表现优秀,测试集和预测集中的平均DSC分别为0.78±0.24和0.75±0.26。结论 eNPM-DM在鼻咽肿块良性/恶性诊断分类方面优于肿瘤学家评估,并且实现了从鼻咽内镜图像背景中对恶性区域自动分割。 展开更多
关键词 鼻咽恶性肿瘤 深度学习 鉴别诊断 自动分割
暂未订购
First-row transition metal compounds for aqueous metal ion batteries
2
作者 Mengmeng Zhou xinjun huang +5 位作者 Xiaomeng Tian Baohua Jia Hongge Pan Wenping Sun Qin Zhao Tianyi Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期195-216,I0004,共23页
In recent years,a series of aqueous metal ion batteries(AMIBs)has been developed to improve the safety and cost-efficiency of portable electronics and electric vehicles.However,the significant gaps in energy density,p... In recent years,a series of aqueous metal ion batteries(AMIBs)has been developed to improve the safety and cost-efficiency of portable electronics and electric vehicles.However,the significant gaps in energy density,power density,and cycle stability of AMIBs directly hinder them from replacing the currently widely used non-aqueous metal ion batteries,which stems from the lack of reasonable configuration and performance optimization of electrode materials.First-row transition metal compounds(FRTMCs),with the advantages of optional voltage ranges(from low to high),adjustable crystal structures(layered and tunnel types with large spacing),and designable morphology(multi-dimensional nanostructures),are widely used to construct high-performance AMIBs.However,no comprehensive review papers were generated to highlight their specific and significant roles in AMIBs.In this review,we first summarize the superiority and characteristics of FRTMCs in AMIBs.Then,we put forward control strategies of FRTMCs from subsurface engineering to inner construction to promote capacitance control and diffusion control energy storage.After that,the electrochemical performance of the FRTMCs regulation strategies in AMIBs is reviewed.Finally,we present potential directions and challenges for further enhancements of FRTMCs in AMIBs.The review aims to provide an in-depth understanding of regulation strategies for enhancing energy storage to build high-performance AMIBs that meet practical applications. 展开更多
关键词 First-row transition metal Aqueous metal ion batteries Energy storage
在线阅读 下载PDF
Development and validation of an endoscopic images-based deep learning model for detection with nasopharyngeal malignancies 被引量:11
3
作者 Chaofeng Li Bingzhong Jing +34 位作者 Liangru Ke Bin Li Weixiong Xia Caisheng He Chaonan Qian Chong Zhao Haiqiang Mai Mingyuan Chen Kajia Cao Haoyuan Mo Ling Guo Qiuyan Chen Linquan Tang Wenze Qiu Yahui Yu Hu Liang xinjun huang Guoying Liu Wangzhong Li Lin Wang Rui Sun Xiong Zou Shanshan Guo Peiyu huang Donghua Luo Fang Qiu Yishan Wu Yijun Hua Kuiyuan Liu Shuhui Lv Jingjing Miao Yanqun Xiang Ying Sun Xiang Guo Xing Lv 《Cancer Communications》 SCIE 2018年第1期632-642,共11页
Background:Due to the occult anatomic location of the nasopharynx and frequent presence of adenoid hyperpla-sia,the positive rate for malignancy identification during biopsy is low,thus leading to delayed or missed di... Background:Due to the occult anatomic location of the nasopharynx and frequent presence of adenoid hyperpla-sia,the positive rate for malignancy identification during biopsy is low,thus leading to delayed or missed diagnosis for nasopharyngeal malignancies upon initial attempt.Here,we aimed to develop an artificial intelligence tool to detect nasopharyngeal malignancies under endoscopic examination based on deep learning.Methods:An endoscopic images-based nasopharyngeal malignancy detection model(eNPM-DM)consisting of a fully convolutional network based on the inception architecture was developed and fine-tuned using separate training and validation sets for both classification and segmentation.Briefly,a total of 28,966 qualified images were collected.Among these images,27,536 biopsy-proven images from 7951 individuals obtained from January 1st,2008,to December 31st,2016,were split into the training,validation and test sets at a ratio of 7:1:2 using simple randomiza-tion.Additionally,1430 images obtained from January 1st,2017,to March 31st,2017,were used as a prospective test set to compare the performance of the established model against oncologist evaluation.The dice similarity coef-ficient(DSC)was used to evaluate the efficiency of eNPM-DM in automatic segmentation of malignant area from the background of nasopharyngeal endoscopic images,by comparing automatic segmentation with manual segmenta-tion performed by the experts.Results:All images were histopathologically confirmed,and included 5713(19.7%)normal control,19,107(66.0%)nasopharyngeal carcinoma(NPC),335(1.2%)NPC and 3811(13.2%)benign diseases.The eNPM-DM attained an overall accuracy of 88.7%(95%confidence interval(CI)87.8%-89.5%)in detecting malignancies in the test set.In the prospective comparison phase,eNPM-DM outperformed the experts:the overall accuracy was 88.0%(95%CI 86.1%-89.6%)vs.80.5%(95%CI 77.0%-84.0%).The eNPM-DM required less time(40 s vs.110.0±5.8 min)and exhibited encouraging performance in automatic segmentation of nasopharyngeal malignant area from the background,with an average DSC of 0.78±0.24 and 0.75±0.26 in the test and prospective test sets,respectively.Conclusions:The eNPM-DM outperformed oncologist evaluation in diagnostic classification of nasopharyngeal mass into benign versus malignant,and realized automatic segmentation of malignant area from the background of nasopharyngeal endoscopic images. 展开更多
关键词 Nasopharyngeal malignancy Deep learning Differential diagnosis Automatic segmentation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部