Purpose-The spatiotemporal compression effect of China-Europe Railway Express(CR-Express)can reduce the filow costs of resources between China's node cities.Additionally,it can break through the limitations of low...Purpose-The spatiotemporal compression effect of China-Europe Railway Express(CR-Express)can reduce the filow costs of resources between China's node cities.Additionally,it can break through the limitations of low-added-value marine products,significantly impacting the logistics industry efficiency.However,there are few literature verifying and analyzing its heterogeneity.This study explores the impact of CR-Express on the efficiency of logistics industry in node cities and analyzes the heterogeneity.Design/methodology/approach-First,this study uses panel data to measure the efficiency of node city logistics industry.Secondiy,this study discusses the impact of the opening of CR-Express on the efficiency of logistics industry in node cities based on the multi-period differential model.Finally,according to the node city difference,the sample city experimental group is grouped for heterogeneity analysis.Findings-The results show that CR-Express can promote the urban logistics industry efficiency,with an average effect of 4.55%.According to the urban characteristics classification,the heterogeneity analysis shows that the efficiency improvement effect of logistics industry in inland cities is more obvious.The improvement effect of node cities and central cities in central and western China is stronger,especially in the sample of megacities and type I big cities.Compared with non-value chain industrial products,the CR-Express has significant promotion effects on the logistics efficiency of the cities where main goods are value chain products.Originality/value-Under the background of double cycle development,this paper can provide a scientific basis for the investment benefit evaluation of CR-Express construction and the follow-up route planning.展开更多
High-order Laguerre–Gaussian(LG)petal-like beams have become a topic of significant interest due to their potential application in next-generation optical trapping,quantum optics,and materials processing technologies...High-order Laguerre–Gaussian(LG)petal-like beams have become a topic of significant interest due to their potential application in next-generation optical trapping,quantum optics,and materials processing technologies.In this work,we demonstrate the generation of high-order LG beams with petal-like spatial profiles and tunable orbital angular momentum(OAM)in the mid-infrared wavelength region.These beams are generated using idler-resonant optical parametric oscillation(OPO)in a KTiOAsO_(4)(KTA)crystal.By adjusting the length of the resonant cavity,the OAM of the mid-infrared idler field can be tuned and we demonstrate tuning in the range of 0 to10.When using a maximum pump energy of 20.2 mJ,the maximum output energy of high-order modes LG_(0.45),LG_(0.48),and LG_(0.410) were 0.8,0.53,and 0.46 mJ,respectively.The means by which high-order LG modes with petal-like spatial profiles and tunable OAM were generated from the OPO is theoretically modeled by examining the spatial overlap efficiency of the beam waists of the pump and resonant idler fields within the center of the KTA crystal.The methodology presented in this work offers a simple and flexible method to wavelength-convert laser emission and generate high-order LG modes.展开更多
The active/passive Q-switching operation of a 2 [tm a-cut Tm,Ho:YAP laser was experimentally demonstrated with an acousto-optical Q-switch/MoS2 saturable absorber mirror. The active Q-switch laser was operated for th...The active/passive Q-switching operation of a 2 [tm a-cut Tm,Ho:YAP laser was experimentally demonstrated with an acousto-optical Q-switch/MoS2 saturable absorber mirror. The active Q-switch laser was operated for the first time, to the best of our knowledge, with an average output power of 12.3 W and a maximum pulse energy of 10.3 mJ. The passive Q-switch laser was also the first acquired with an average output power of 3.3 W and per pulse energy of 23.31 μJ, and the beam quality factors of Mx^2 = 1.06 and My^2 = 1.06 were measured at the average output power of 2 W.展开更多
基金National Natural Science Foundation of China(No.72071133)Hebei Provincial Department of Education Humanities and Social Science Research Major Projects(No.ZD202309).
文摘Purpose-The spatiotemporal compression effect of China-Europe Railway Express(CR-Express)can reduce the filow costs of resources between China's node cities.Additionally,it can break through the limitations of low-added-value marine products,significantly impacting the logistics industry efficiency.However,there are few literature verifying and analyzing its heterogeneity.This study explores the impact of CR-Express on the efficiency of logistics industry in node cities and analyzes the heterogeneity.Design/methodology/approach-First,this study uses panel data to measure the efficiency of node city logistics industry.Secondiy,this study discusses the impact of the opening of CR-Express on the efficiency of logistics industry in node cities based on the multi-period differential model.Finally,according to the node city difference,the sample city experimental group is grouped for heterogeneity analysis.Findings-The results show that CR-Express can promote the urban logistics industry efficiency,with an average effect of 4.55%.According to the urban characteristics classification,the heterogeneity analysis shows that the efficiency improvement effect of logistics industry in inland cities is more obvious.The improvement effect of node cities and central cities in central and western China is stronger,especially in the sample of megacities and type I big cities.Compared with non-value chain industrial products,the CR-Express has significant promotion effects on the logistics efficiency of the cities where main goods are value chain products.Originality/value-Under the background of double cycle development,this paper can provide a scientific basis for the investment benefit evaluation of CR-Express construction and the follow-up route planning.
基金supported by the National Natural Science Foundation of China(Grant Nos.12264049 and 11664041)the Xinjiang Normal University Young Outstanding Talent Programme(Grant No.XJNUQB2022-17).
文摘High-order Laguerre–Gaussian(LG)petal-like beams have become a topic of significant interest due to their potential application in next-generation optical trapping,quantum optics,and materials processing technologies.In this work,we demonstrate the generation of high-order LG beams with petal-like spatial profiles and tunable orbital angular momentum(OAM)in the mid-infrared wavelength region.These beams are generated using idler-resonant optical parametric oscillation(OPO)in a KTiOAsO_(4)(KTA)crystal.By adjusting the length of the resonant cavity,the OAM of the mid-infrared idler field can be tuned and we demonstrate tuning in the range of 0 to10.When using a maximum pump energy of 20.2 mJ,the maximum output energy of high-order modes LG_(0.45),LG_(0.48),and LG_(0.410) were 0.8,0.53,and 0.46 mJ,respectively.The means by which high-order LG modes with petal-like spatial profiles and tunable OAM were generated from the OPO is theoretically modeled by examining the spatial overlap efficiency of the beam waists of the pump and resonant idler fields within the center of the KTA crystal.The methodology presented in this work offers a simple and flexible method to wavelength-convert laser emission and generate high-order LG modes.
基金National Natural Science Foundation of China(NSFC)(61378029,61775053,51572053,51777046)Science Foundation for Outstanding Youths of Heilongjiang Province(JC2016016)Science Foundation for Youths of Heilongjiang Province(QC2017078)
文摘The active/passive Q-switching operation of a 2 [tm a-cut Tm,Ho:YAP laser was experimentally demonstrated with an acousto-optical Q-switch/MoS2 saturable absorber mirror. The active Q-switch laser was operated for the first time, to the best of our knowledge, with an average output power of 12.3 W and a maximum pulse energy of 10.3 mJ. The passive Q-switch laser was also the first acquired with an average output power of 3.3 W and per pulse energy of 23.31 μJ, and the beam quality factors of Mx^2 = 1.06 and My^2 = 1.06 were measured at the average output power of 2 W.