期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Adsorption of ciprofloxacin on(Zn-Al)LDHs modified 3D reduced graphene oxide:Response surface methodology,adsorption equilibrium,kinetic and thermodynamic studies
1
作者 Chong Lu xingwei han +2 位作者 Haojun Zou Xue Gao Sijia Wang 《Chinese Journal of Chemical Engineering》 2025年第7期125-136,共12页
The indiscriminate use and disposal of ciprofloxacin(CIP)have led to its detection in water globally,which pose a huge risk to public health and water environment.Herein,(Zn-Al)LDHs modified 3D reduced graphene oxide ... The indiscriminate use and disposal of ciprofloxacin(CIP)have led to its detection in water globally,which pose a huge risk to public health and water environment.Herein,(Zn-Al)LDHs modified 3D reduced graphene oxide nanocomposite((Zn-Al)LDHs/3D-rGO)was synthesized through a feasible onepot hydrothermal method for CIP removal.The highly distributed(Zn-Al)LDHs flakes on the surface of 3D-rGO endow the resulted(Zn-Al)LDHs/3D-rGO with an excellent adsorption performance for CIP.The adsorption results showed that the adsorption process could be well interpreted by Temkin isothermal model and the pseudo second-order kinetics model.The maximal adsorption capacity of 20.01 mg·g^(-1)for CIP could be achieved under the optimal conditions optimized by response surface methodology(RSM).The inhibitory effect of co-existing ions on CIP adsorption were also discussed.The probable adsorption mechanism might be ascribed toπ-πinteractions,hydrogen bonding,electrostatic,and surface complexation.Regeneration tests showed that the obtained 3D porous material also possessed pronounced recyclability.The obtained(Zn-Al)LDHs/3D-rGO holds a great potential for removal of CIP from actual wastewater. 展开更多
关键词 (Zn-Al)LDHs 3D reduced graphene oxide ADSORBENT Synthesis CIPROFLOXACIN ADSORPTION
在线阅读 下载PDF
Research on the accurate calculation method of crater position in lunar surface images based on feature matching
2
作者 Yanning Zheng Xue Dong +5 位作者 Zhipeng Liang Jian Gao Bowen Guan Liyan Sun xingwei han He Dong 《Astronomical Techniques and Instruments》 2025年第4期265-273,共9页
Lunar Laser Ranging has extremely high requirements for the pointing accuracy of the telescopes used.To improve its pointing accuracy and solve the problem of insufficiently accurate telescope pointing correction achi... Lunar Laser Ranging has extremely high requirements for the pointing accuracy of the telescopes used.To improve its pointing accuracy and solve the problem of insufficiently accurate telescope pointing correction achieved by tracking stars in the all-sky region,we propose a processing scheme to select larger-sized lunar craters near the Lunar Corner Cube Retroreflector as reference features for telescope pointing bias computation.Accurately determining the position of the craters in the images is crucial for calculating the pointing bias;therefore,we propose a method for accurately calculating the crater position based on lunar surface feature matching.This method uses matched feature points obtained from image feature matching,using a deep learning method to solve the image transformation matrix.The known position of a crater in a reference image is mapped using this matrix to calculate the crater position in the target image.We validate this method using craters near the Lunar Corner Cube Retroreflectors of Apollo 15 and Luna 17 and find that the calculated position of a crater on the target image falls on the center of the crater,even for image features with large distortion near the lunar limb.The maximum image matching error is approximately 1″,and the minimum is only 0.47″,which meets the pointing requirements of Lunar Laser Ranging.This method provides a new technical means for the high-precision pointing bias calculation of the Lunar Laser Ranging system. 展开更多
关键词 Lunar Laser Ranging system High-precision pointing correction Lunar surface features Image feature matching Deep learning Crater position calculation
在线阅读 下载PDF
Transparent flexible ZnO/MWCNTs/PBMA ternary nanocomposite film with enhanced mechanical properties 被引量:1
3
作者 xingwei han Xiaofei Zeng +3 位作者 Jiexin Wang Dejia Kong N.R. Foster Jianfeng Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第8期1010-1017,共8页
Functional organic-inorganic nanocomposites with high transparency show significant potential application in many fields. However, it is still a great challenge to prepare flexible transparent nanocomposites due to th... Functional organic-inorganic nanocomposites with high transparency show significant potential application in many fields. However, it is still a great challenge to prepare flexible transparent nanocomposites due to the intrinsic stiffness of the nanoparticles and the poor interaction between nanopartieles and organic matrices. In this work, a transparent ternary nanocomposite film with enhanced mechanical performance is fabricated by two-steps. First, the transparent ternary ZnO/MWCNTs/n-butyl methacrylate (BMA) nanodispersion is prepared by mixing the ZnO/BMA and MWCNTs/BMA dispersions directly. Then, the ternary nanocoposites film is fabricated via in-situ bulk polymerization of the above nanodispersions. As a result, the tensile strength of the ZnO/MWCNTs/poly-n-butyl methacrylate (PBMA) ternary film is enhanced by 42% and the elongation at break is three times that of ZnO/PBMA nanocomposite. The hardness of the film increases from 5B to 1H with 40 wt% ZnO. These results indicate that ZnO and MWCNTs can improve the mechanical properties of the composite significantly. Importantly, the ternary nanocomposite film still remains high transparency and exhibit excellent UV-shielding performance. The as-prepared transparent multifunctional nanocomposite films have promising applications in optical materials and devices, such as optical filters, contact lenses and protection packing. 展开更多
关键词 ZNO carbon nanotubes transparent ternary nanocomposite UV-SHIELDING mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部