期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Nonnegative tensor factorizations using an alternating direction method 被引量:4
1
作者 xingju cai Yannan CHEN Deren HAN 《Frontiers of Mathematics in China》 SCIE CSCD 2013年第1期3-18,共16页
The nonnegative tensor (matrix) factorization finds more and more applications in various disciplines including machine learning, data mining, and blind source separation, etc. In computation, the optimization probl... The nonnegative tensor (matrix) factorization finds more and more applications in various disciplines including machine learning, data mining, and blind source separation, etc. In computation, the optimization problem involved is solved by alternatively minimizing one factor while the others are fixed. To solve the subproblem efficiently, we first exploit a variable regularization term which makes the subproblem far from ill-condition. Second, an augmented Lagrangian alternating direction method is employed to solve this convex and well-conditioned regularized subproblem, and two accelerating skills are also implemented. Some preliminary numerical experiments are performed to show the improvements of the new method. 展开更多
关键词 Nonnegative matrix factorization nonnegative tensor factorization nonnegative least squares alternating direction method
原文传递
O(1/t) complexity analysis of the generalized alternating direction method of multipliers 被引量:1
2
作者 xingju cai Deren Han 《Science China Mathematics》 SCIE CSCD 2019年第4期795-808,共14页
Owing to its efficiency in solving some types of large-scale separable optimization problems with linear constraints, the convergence rate of the alternating direction method of multipliers(ADMM for short) has recentl... Owing to its efficiency in solving some types of large-scale separable optimization problems with linear constraints, the convergence rate of the alternating direction method of multipliers(ADMM for short) has recently attracted significant attention. In this paper, we consider the generalized ADMM(G-ADMM), which incorporates an acceleration factor and is more efficient. Instead of using a solution measure that depends on a bounded set and cannot be easily estimated, we propose using the original ?-optimal solution measure, under which we prove that the G-ADMM converges at a rate of O(1/t). The new bound depends on the penalty parameter and the distance between the initial point and the solution set, which is more reasonable than the previous bound. 展开更多
关键词 generalized ALTERNATING direction method of MULTIPLIERS SEPARABLE CONVEX optimization ITERATION complexity SUBLINEAR convergence rate
原文传递
稀疏优化在数独中的应用
3
作者 陈永鑫 蔡邢菊 姜波 《中国科学:数学》 CSCD 北大核心 2022年第2期209-222,共14页
数独是一个难以求解的整数规划问题,可以通过实数编码的方式去除整数约束的限制,将整数规划模型转化为一个ℓ_(0)范数极小化模型.已有算法大多是求解松弛的ℓ1范数极小化模型,只能求解部分数独问题.本文证明对于数独这样一个特殊的问题,ℓ_... 数独是一个难以求解的整数规划问题,可以通过实数编码的方式去除整数约束的限制,将整数规划模型转化为一个ℓ_(0)范数极小化模型.已有算法大多是求解松弛的ℓ1范数极小化模型,只能求解部分数独问题.本文证明对于数独这样一个特殊的问题,ℓ_(q)(0<q<1)范数极小化模型等价于ℓ_(0)范数极小化模型,同时用ℓ_(1/2)-SLP(sequential linear programming)算法求解ℓ_(1/2)范数极小化模型.数值实验表明该方法可以求解更多的数独问题,本文从时间和成功率两方面验证了算法的高效性. 展开更多
关键词 实数编码 稀疏优化 ℓ_(0)范数极小化模型 ℓ_(q)(0 ℓ_(1/2)-SLP算法
原文传递
Prediction-correction method with BB step sizes 被引量:1
4
作者 Xiaomei DONG xingju cai Deren HAN 《Frontiers of Mathematics in China》 SCIE CSCD 2018年第6期1325-1340,共16页
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部