creening of foodborne pathogens is important to prevent contaminated foods from their supply chains.n this study, a portable detection device was developed for rapid, sensitive and simple detection of viable almonella...creening of foodborne pathogens is important to prevent contaminated foods from their supply chains.n this study, a portable detection device was developed for rapid, sensitive and simple detection of viable almonella using a finger-actuated microfluidic chip and an improved recombinase aided amplification (RAA) assay. Improved propidium monoazide(PMAxx) was combined with RAA to enable this device to distinguish viable bacteria from dead ones. The modification of PMAxx into dead bacteria, the magnetic xtraction of nucleic acids from viable bacteria and the RAA detection of extracted nucleic acids were performed using the microfluidic chip on its supporting device by finger press-release operations. The fluorescent signal resulting from RAA amplification of the nucleic acids was collected using a USB camera nd analyzed using a self-developed smartphone App to quantitatively determine the bacterial concenration. This device could detect Salmonella typhimurium in spiked chicken meats from 1.3 × 10^(2) CFU/m L o 1.3 × 10^(7) CFU/m L in 2 h with a lower detection limit of 130 CFU/m L, and has shown its potential for on-site detection of foodborne pathogens.展开更多
基金funded by National Natural Science Foundation of China (No. 32071899)Walmart Foundation (No. UA2020– 154)。
文摘creening of foodborne pathogens is important to prevent contaminated foods from their supply chains.n this study, a portable detection device was developed for rapid, sensitive and simple detection of viable almonella using a finger-actuated microfluidic chip and an improved recombinase aided amplification (RAA) assay. Improved propidium monoazide(PMAxx) was combined with RAA to enable this device to distinguish viable bacteria from dead ones. The modification of PMAxx into dead bacteria, the magnetic xtraction of nucleic acids from viable bacteria and the RAA detection of extracted nucleic acids were performed using the microfluidic chip on its supporting device by finger press-release operations. The fluorescent signal resulting from RAA amplification of the nucleic acids was collected using a USB camera nd analyzed using a self-developed smartphone App to quantitatively determine the bacterial concenration. This device could detect Salmonella typhimurium in spiked chicken meats from 1.3 × 10^(2) CFU/m L o 1.3 × 10^(7) CFU/m L in 2 h with a lower detection limit of 130 CFU/m L, and has shown its potential for on-site detection of foodborne pathogens.