Photothermal catalysis represents an emerging technology for solar energy conversion that combines the principles and advantages of photoand thermal catalytic mechanisms[1–5].Driven by the inter/intra-band transition...Photothermal catalysis represents an emerging technology for solar energy conversion that combines the principles and advantages of photoand thermal catalytic mechanisms[1–5].Driven by the inter/intra-band transitions and subsequent electron-phonon scattering processes,photothermal catalysts can achieve rapid and highly localized heating,providing thermal activation to the chemical conversions.Besides,direct participation of photo-generated charge carriers could also drastically reduce the activation energy barriers and modulate the catalytic pathways.However,distinction between thermal and non-thermal contributions remains a key challenge for both fundamental understandings and large-scale applications of photothermal catalysis[6,7].This issue is largely due to a lack of precise in-situ surface-temperature measurement techniques that accurately quantify the light-to-heat conversion under reaction conditions at the nanoscale.Conventional macroscopic temperature measurement techniques,such as infrared cameras and thermocouples,suffer from the lack of spatiotemporal resolutions required for the localized photothermal conversion.They are,thus,measuring an average temperature of the ambient medium.Besides,they typically cannot be applied in in-situ temperature measurements,which is crucial since inaccurate heat dissipation rates may be predicted by ex-situ temperature measurement techniques.For instance,differences in gas pressure,composition and flow rate could lead to significantly different convective heat fluxes.展开更多
Localized surface plasmon resonance has been demonstrated to provide effective photophysical enhancement mechanisms in plasmonic photocatalysis.However,it remains highly challenging for distinct mechanisms to function...Localized surface plasmon resonance has been demonstrated to provide effective photophysical enhancement mechanisms in plasmonic photocatalysis.However,it remains highly challenging for distinct mechanisms to function in synergy for a collective gain in catalysis due to the lack of spatiotemporal control of their effect.Herein,the anisotropic plasmon resonance nature of Au nanorods was exploited to achieve distinct functionality towards synergistic photocatalysis.Photothermal and photochemical effects were enabled by the longitudinal and transverse plasmon resonance modes,respectively,and were enhanced by partial coating of silica nanoshells and epitaxial growth of a reactor component.Resonant excitation leads to a synergistic gain in photothermal-mediated hot carrier-driven hydrogen evolution catalysis.Our approach provides important design principles for plasmonic photocatalysts in achieving spatiotemporal modulation of distinct photophysical enhancement mechanisms.It also effectively broadens the sunlight response range and increases the efficacy of distinct plasmonic enhancement pathways towards solar energy harvesting and conversion.展开更多
Photochemical catalytic processes can reduce the activation energy so that reactions can occur under milder conditions.However,it is still unknown whether photochemical effects are present in photothermal catalysis ov...Photochemical catalytic processes can reduce the activation energy so that reactions can occur under milder conditions.However,it is still unknown whether photochemical effects are present in photothermal catalysis over conventional transition metal materials.Herein,the representative photothermal CO_(2)hydrogenation catalyst,Ni@p-SiO_(2),is employed as a model system to quantitatively probe the contribution of photochemical effect.Through a series of catalytic and photophysical characterizations,it is found that negligible photochemical effect in the ultraviolet-visible region can be observed for the traditional Ni-based catalyst.The results of photo-electrochemistry(PEC)test further confirm that no apparent photochemical effect is present for the Ni@p-SiO_(2)catalyst in the aqueous-phase environment.It has been further evidenced that the photochemical contributions can be significantly amplified by introducing plasmonic metals,such as Au,into the system.This work provides a guideline for the design and construction of efficient synergetic photothermal-photochemical catalytic systems.展开更多
基金support from the National Natural Science Foundation of China(22302137,52172221,52272229,51920105005)the Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices(ZZ2201)+1 种基金the Suzhou Key Laboratory of Advanced Photonic Materialsthe Collaborative Innovation Center of Suzhou Nano Science&Technology.
文摘Photothermal catalysis represents an emerging technology for solar energy conversion that combines the principles and advantages of photoand thermal catalytic mechanisms[1–5].Driven by the inter/intra-band transitions and subsequent electron-phonon scattering processes,photothermal catalysts can achieve rapid and highly localized heating,providing thermal activation to the chemical conversions.Besides,direct participation of photo-generated charge carriers could also drastically reduce the activation energy barriers and modulate the catalytic pathways.However,distinction between thermal and non-thermal contributions remains a key challenge for both fundamental understandings and large-scale applications of photothermal catalysis[6,7].This issue is largely due to a lack of precise in-situ surface-temperature measurement techniques that accurately quantify the light-to-heat conversion under reaction conditions at the nanoscale.Conventional macroscopic temperature measurement techniques,such as infrared cameras and thermocouples,suffer from the lack of spatiotemporal resolutions required for the localized photothermal conversion.They are,thus,measuring an average temperature of the ambient medium.Besides,they typically cannot be applied in in-situ temperature measurements,which is crucial since inaccurate heat dissipation rates may be predicted by ex-situ temperature measurement techniques.For instance,differences in gas pressure,composition and flow rate could lead to significantly different convective heat fluxes.
基金the support from the National Natural Science Foundation of China(22302137,52172221,52272229,51920105005,52302297)the National Postdoctoral Program for Innovative Talents(BX20220222)+3 种基金the China Postdoctoral Science Foundation(2023M742529,2021M702388)Jiangsu Funding Program for Excellent Postdoctoral Talent(2023ZB163,2022ZB564)Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices(zz2201,ZZ2103)Suzhou Key Laboratory of Advanced Photonic Materials,Collaborative Innovation Center of Suzhou Nano Science&Technology.
文摘Localized surface plasmon resonance has been demonstrated to provide effective photophysical enhancement mechanisms in plasmonic photocatalysis.However,it remains highly challenging for distinct mechanisms to function in synergy for a collective gain in catalysis due to the lack of spatiotemporal control of their effect.Herein,the anisotropic plasmon resonance nature of Au nanorods was exploited to achieve distinct functionality towards synergistic photocatalysis.Photothermal and photochemical effects were enabled by the longitudinal and transverse plasmon resonance modes,respectively,and were enhanced by partial coating of silica nanoshells and epitaxial growth of a reactor component.Resonant excitation leads to a synergistic gain in photothermal-mediated hot carrier-driven hydrogen evolution catalysis.Our approach provides important design principles for plasmonic photocatalysts in achieving spatiotemporal modulation of distinct photophysical enhancement mechanisms.It also effectively broadens the sunlight response range and increases the efficacy of distinct plasmonic enhancement pathways towards solar energy harvesting and conversion.
基金supported by the National Natural Science Foundation of China(52172221,52272229,51920105005)the China Postdoctoral Science Foundation(2022M712304)+4 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB534,2022ZB564)the China Postdoctoral Science Foundation(2021M702388)the Natural Science Foundation of Jiangsu Province(BK20200101)Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices(ZZ2201,ZZ2103)Suzhou Key Laboratory of Functional Nano&Soft Materials,Collaborative Innovation Center of Suzhou Nano Science&Technology.
文摘Photochemical catalytic processes can reduce the activation energy so that reactions can occur under milder conditions.However,it is still unknown whether photochemical effects are present in photothermal catalysis over conventional transition metal materials.Herein,the representative photothermal CO_(2)hydrogenation catalyst,Ni@p-SiO_(2),is employed as a model system to quantitatively probe the contribution of photochemical effect.Through a series of catalytic and photophysical characterizations,it is found that negligible photochemical effect in the ultraviolet-visible region can be observed for the traditional Ni-based catalyst.The results of photo-electrochemistry(PEC)test further confirm that no apparent photochemical effect is present for the Ni@p-SiO_(2)catalyst in the aqueous-phase environment.It has been further evidenced that the photochemical contributions can be significantly amplified by introducing plasmonic metals,such as Au,into the system.This work provides a guideline for the design and construction of efficient synergetic photothermal-photochemical catalytic systems.