期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
核糖体DNA转录的表观调控与肿瘤发生 被引量:1
1
作者 程香荣 胡兴琳 +3 位作者 姜琦 黄星卫 王楠 雷蕾 《遗传》 CAS CSCD 北大核心 2019年第3期185-192,共8页
近年来,表观遗传机制的研究结果提示核糖体DNA (rDNA)表观调控机制的缺陷可能诱导肿瘤发生。ATRX/DAXX复合物通过介导H3.3的H3K9me3修饰,建立和维持rDNA转录沉默。ATRX/DAXX基因在部分肿瘤中经常发生突变,可能刺激rDNA转录而促进肿瘤发... 近年来,表观遗传机制的研究结果提示核糖体DNA (rDNA)表观调控机制的缺陷可能诱导肿瘤发生。ATRX/DAXX复合物通过介导H3.3的H3K9me3修饰,建立和维持rDNA转录沉默。ATRX/DAXX基因在部分肿瘤中经常发生突变,可能刺激rDNA转录而促进肿瘤发生发展。本文主要阐述rDNA转录表达异常对肿瘤发生的促进作用,介绍rDNA基因转录的表观遗传调控机制,以期为针对rDNA转录调控机制的药物研发提供新的理论支持。 展开更多
关键词 RDNA 表观调控 H3.3 ATRX/DAXX 肿瘤发生
暂未订购
Study of temperature and precipitation change in upstream mountain area of the Hexi inland river basin since 1960s 被引量:4
2
作者 YongChao Lan HongLang Xiao +4 位作者 xinglin hu HongWei Ding SongBing Zou ChengFang La Jie Song 《Research in Cold and Arid Regions》 2012年第6期522-535,共14页
All rivers in the Hexi inland region of Gansu Province, China, originate from the northern slope of the Qilian Mountains. They are located in the southern portion of the region and respectively belong to the three lar... All rivers in the Hexi inland region of Gansu Province, China, originate from the northern slope of the Qilian Mountains. They are located in the southern portion of the region and respectively belong to the three large river systems from east to west, the Shiyang, Heihe and Shule river basins. These rivers are supplied by precipitation, snowmelt and ice-melt runoff from the Qilian Mountain area. Therefore, changes of precipitation and temperature in the upstream watersheds of these rivers have an important effect on changes of mountainous runoff and reasonable utilization of water resources in this region. For this reason, the Qilian Mountain area, upstream watersheds and runoff forming areas of these rivers are chosen as the study area. The change characteristics and variation trend of temperature and precipitation in this area under the backdrop of global warming axe analyzed based on observa- tional data of relational weather and hydrologic stations in the area. Results show that temperatures in the upriver mountain areas of these three large river basins have been increasing, although the increasing degree is differentially affected by global warming. The rising extent of annual and seasonal temperatures in the upstream mountain area of the Shule river basin located in the west- em Qilian Mountains, were all largest over the past 50 years. Precipitation in the upstream mountain areas of Hexi region' three river basins located respectively in the western, middle and eastern Qilian Mountains have been presenting an increasing trend to varying degrees as a whole for more than 50 years. This means that climate in the upstream mountain areas of Hexi region' three river basins are becoming increasingly warmer and moister over the past 50 years, which will be very good for the ecological en- vironment and agricultural production in the region. 展开更多
关键词 global warming upstream mountain area Qilian Mountains three large fiver systems Hexi inland fiver basin
在线阅读 下载PDF
Sensitivity of mountain runoff to climate change for Urumqi and Kaidu rivers originating from the Tianshan Mountains 被引量:1
3
作者 YongChao Lan ZhengYao Ma +4 位作者 YongPing Shen ChengFang La Jie Song xinglin hu HongWei Din 《Research in Cold and Arid Regions》 2011年第3期274-280,共7页
The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends o... The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends on variation of temperature, precipitation and runoff, and the correlativity between temperature, precipitation, and runoffwere analyzed based on the past 40 years of observational data from the correlative hydrological and weather stations in the study areas. Various weather scene combinations are assumed and the response models of runoff to climate change are established in order to evaluate the sensitivity of runoff to climate change in the study areas based on the foregoing analysis, Results show that all variations of temperature, precipitation, and runoff overall present an oscillating and increasing trend since the 1960s and this increase are quite evident after 1990. There is a markedly positive correlation between mountain runoff, temperature, and precipitation while there are obvious regional differences of responding degree to precipitation and temperature between mountain runoff of Ummqi River and Kaidu River Basins Also, mountain runoff of Urumqi River Basin is more sensitive to precipitation change than that of Kaidu River Basin, and mountain runoff of Kaidu River Basin is more sensitive to temperature change than that of Ummqi River Basin. 展开更多
关键词 south slope north slope Tianshan Mountains Kaidu River Urumqi River climate change sensitivity
在线阅读 下载PDF
An estimation of groundwater storage variations from GRACE gravity satellites in the Heihe River Basin, northwestern China
4
作者 YanPing Cao ZhuoTong Nan xinglin hu 《Research in Cold and Arid Regions》 CSCD 2014年第6期577-586,共10页
There are only limited surface water resources available in the Heihe River Basin (HRB), a typical inland river basin in the arid region of northwestern China, where groundwater overexploitation is a serious problem... There are only limited surface water resources available in the Heihe River Basin (HRB), a typical inland river basin in the arid region of northwestern China, where groundwater overexploitation is a serious problem. Groundwater has become one of main resources of fresh water in the HRB. In this paper, temporal and spatial variations of groundwater in the HRB are estimated by the Gravity Recovery and Climate Experiment (GRACE) satellites. Our analysis shows that groundwater storage in the HRB reaches its highest in the summer of 2005, and then begins to decline in the following years and reaches steady status in 2008. Spatially, groundwater shows a decline in the upper HRB in the first two years and a slight increase in the following years, while this phenomenon is reversed in the middle HRB where groundwater slightly increases in 2005 and then declines in the following three years. In the lower HRB, GRACE detects a continual increase in the full six-year period. This approach is proven successful when employed in the HRB and thus offers a new insight into monitoring groundwater variations in a river basin with limited or even without any observed data. 展开更多
关键词 GRACE gravity satellites GROUNDWATER Heihe River Basin terrestrial water storage
在线阅读 下载PDF
Possible change on the runoff in the upper Yellow River basin under global climate change 被引量:2
5
作者 YongChao Lan Jun Wen +4 位作者 JunJie Chang YeXin Xu YongPing Shen xinglin hu JinQi Lu 《Research in Cold and Arid Regions》 2009年第2期157-164,共8页
In this study,the characteristics and changing trends of temperature,precipitation,and runoff in the upper Yellow River basin up Tangnag station are analyzed by using hydrological and meteorological data in the past 5... In this study,the characteristics and changing trends of temperature,precipitation,and runoff in the upper Yellow River basin up Tangnag station are analyzed by using hydrological and meteorological data in the past 50 years from observation stations in the basin.Further,in this study,the evolving trend of runoff in the future decades is forecasted in the basin based on the method of suppositional climate scenes combination.The results indicate temperature variation in the basin has an evident positive relation with global warming,and the precipitation variations are quite complicated in the basin because of differences of located geographic positions during the past 50 years.Runoff in the basin has been decreasing continually since the end of the 1980s because the mean temperature in the basin has been rising and precipitation in the main areas of runoff formation in the basin has been decreasing.Runoff will largely decrease if precipitation decreases and temperature rises continuously,whereas runoff will increase if temperature is invariable and precipitation increases largely;the increase magnitude of runoff may be more than that of precipitation because of the synchronously increasing supply of meltwater from snow,glacier,and frozen soils in future several decades. 展开更多
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部