Single-crystal LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(SC-811),which offers better cycle performance compared to the polycrystalline counterpart,has received great attention.We report herein the synthesis of SC-811 with a gra...Single-crystal LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(SC-811),which offers better cycle performance compared to the polycrystalline counterpart,has received great attention.We report herein the synthesis of SC-811 with a grain size of 2-4μm by washing and reheating method,which compares with conventional polycrystalline LiNi_(0.8)-Co_(0.1)Mn_(0.1)O_(2)(PC-811).The discharge capacity of SC-811 reaches 152.1 mAh·g^(-1)after 100 cycles(86.7%capacity retention)at 1.0 C,which is much better than that of PC-811(130.2 mAh·g^(-1),73.8%capacity retention).By using multiscale characterization,the results unveil that SC-811 can not only improve the reversibility of the H2-H3 phase transitions,suppress the generation of micro-cracks and phase transformations,but also mitigate the undesired side reactions between electrode and electrolyte.Besides,the Li-O bond of SC-811 is longer than that of PC-811,which is conducive to the de-intercalation of Li-ions,thereby enhancing the structural stability.This finding provides an impressive strategy to sustain structural stability and improve the cycling life of Ni-rich layered cathodes.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51774150 and 51974137)。
文摘Single-crystal LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(SC-811),which offers better cycle performance compared to the polycrystalline counterpart,has received great attention.We report herein the synthesis of SC-811 with a grain size of 2-4μm by washing and reheating method,which compares with conventional polycrystalline LiNi_(0.8)-Co_(0.1)Mn_(0.1)O_(2)(PC-811).The discharge capacity of SC-811 reaches 152.1 mAh·g^(-1)after 100 cycles(86.7%capacity retention)at 1.0 C,which is much better than that of PC-811(130.2 mAh·g^(-1),73.8%capacity retention).By using multiscale characterization,the results unveil that SC-811 can not only improve the reversibility of the H2-H3 phase transitions,suppress the generation of micro-cracks and phase transformations,but also mitigate the undesired side reactions between electrode and electrolyte.Besides,the Li-O bond of SC-811 is longer than that of PC-811,which is conducive to the de-intercalation of Li-ions,thereby enhancing the structural stability.This finding provides an impressive strategy to sustain structural stability and improve the cycling life of Ni-rich layered cathodes.