In order to investigate the tritium behaviors in Hastelloy N alloy in molten salt reactor,first-principles calculations are used to study the interaction between hydrogen and Ad transition metal alloying atom in nicke...In order to investigate the tritium behaviors in Hastelloy N alloy in molten salt reactor,first-principles calculations are used to study the interaction between hydrogen and Ad transition metal alloying atom in nickelbased alloy.The interaction energies between Ad elements and H are calculated.Atomic size effects and electron distribution effects are analyzed.The hydrogen-4d interactions are compared with the hydrogen-3d interactions calculated in our previous work.展开更多
La_((1-x))Mg_xNi_(4.25)Al_(0.75)(x = 0.0, 0.1, 0.2, 0.3)alloys for tritium storage were prepared by a method of electromagnetic induction melting. The crystal structure and hydrogen storage performance of the as-cast ...La_((1-x))Mg_xNi_(4.25)Al_(0.75)(x = 0.0, 0.1, 0.2, 0.3)alloys for tritium storage were prepared by a method of electromagnetic induction melting. The crystal structure and hydrogen storage performance of the as-cast alloys were investigated. The results showed that a single phase of La Ni_4Al was in the alloys with x = 0.0 and 0.1 and that LaNi_4Al and second phase of(La,Mg)Ni)_3 and AlNi_3 were in the alloys with x = 0.2 and 0.3. On the other hand, the plateau pressures of P–C isotherms of the alloys were increased with the rise of the x value from 0.2 to 0.3 and the hydrogen storage capacity was obviously degraded simultaneously. It was found that the alloy had faster absorption kinetics as the proportion of Mg increased from 0.1 to 0.3.展开更多
A ZrV_(2)alloy is typically susceptible to poisoning by impurity gases,which causes a considerable reduction in the hydrogen storage properties of the alloy.In this study,the adsorption characteristics of oxygen on Zr...A ZrV_(2)alloy is typically susceptible to poisoning by impurity gases,which causes a considerable reduction in the hydrogen storage properties of the alloy.In this study,the adsorption characteristics of oxygen on ZrV_(2)surfaces doped with Hf,Ti,and Pd are investigated,and the effect of oxygen on the hydrogen storage performance of the alloy was discussed.Subsequently,the adsorption energy,bond-length change,density of states,and differential charge density of the alloy before and after doping are analyzed using the first-principles method.The theoretical results show that Ti doping has a limited effect on the adsorption of oxygen atoms on the ZrV_(2)surface,whereas Hf doping decreases the adsorption energy of oxygen on the ZrV_(2)surface.Oxygen atoms are more difficult to adsorb at most adsorption sites on Pd-substituting surfaces,which indicates that Pd has the best anti-poisoning properties,followed by Hf.The analysis of the differential charge density and partial density of states show that the electron interaction between the oxygen atom and surface atom of the alloys is weakened,and the total energy is reduced after Hf and Pd doping.Based on theoretical calculations,the hydrogen absorption kinetics of ZrV_(2),Zr_(0.9)Hf_(0.1)V_(2),and Zr(V_(0.9)Pd_(0.1))_(2) alloys are studied in a hydrogen-oxygen mixture of 0.5 vol%O_(2) at 25℃.The experimental results show that the hydrogen storage capacities of ZrV_(2),Zr_(0.9)Hf_(0.1)V_(2),and Zr(V_(0.9)Pd_(0.1))_(2) decrease to 19%,69%,and 80%of their original values,respectively.The order of alloy resistance to 0.5 vol%O_(2) poisoning is Zr(V_(0.9)Pd_(0.1))_(2)>Zr_(0.9)Hf_(0.1)V_(2)>ZrV_(2).Pd retains its original hydrogen absorption performance to a greater extent than undoped surfaces,and it has the strongest resistance to poisoning,which is consistent with previous theoretical calculations.展开更多
Realtime trigger and localization of bursts are the key functions of GECAM,an all-sky gamma-ray monitor launched on 2020 December 10.We developed a multifunctional trigger and localization software operating in the CP...Realtime trigger and localization of bursts are the key functions of GECAM,an all-sky gamma-ray monitor launched on 2020 December 10.We developed a multifunctional trigger and localization software operating in the CPU of the GECAM Electronic Box.This onboard software has the following features:high trigger efficiency for real celestial bursts with a suppression of false triggers caused by charged particle bursts and background fluctuation,dedicated localization algorithm optimized for both short and long bursts,and low time latency of the trigger information which is downlinked through the Global Short Message Communication service of the global BeiDou navigation system.This paper provides a detailed description of the design and development of the trigger and localization software system for GECAM.It covers the general design,workflow,the main functions,and the algorithms used in the system.The paper also includes on-ground trigger tests using simulated gamma-ray bursts generated by a dedicated X-ray tube,as well as an overview of the performance for real celestial bursts during its in-orbit operation.展开更多
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences(No.XDA02020200)the National Natural Science Foundation of China(No.51601212)
文摘In order to investigate the tritium behaviors in Hastelloy N alloy in molten salt reactor,first-principles calculations are used to study the interaction between hydrogen and Ad transition metal alloying atom in nickelbased alloy.The interaction energies between Ad elements and H are calculated.Atomic size effects and electron distribution effects are analyzed.The hydrogen-4d interactions are compared with the hydrogen-3d interactions calculated in our previous work.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA02020200)the National Natural Science Foundation of China (No. 11475145)the Yangzhou Foundation for Development of Science and Technology (No. YZ2014041)
文摘La_((1-x))Mg_xNi_(4.25)Al_(0.75)(x = 0.0, 0.1, 0.2, 0.3)alloys for tritium storage were prepared by a method of electromagnetic induction melting. The crystal structure and hydrogen storage performance of the as-cast alloys were investigated. The results showed that a single phase of La Ni_4Al was in the alloys with x = 0.0 and 0.1 and that LaNi_4Al and second phase of(La,Mg)Ni)_3 and AlNi_3 were in the alloys with x = 0.2 and 0.3. On the other hand, the plateau pressures of P–C isotherms of the alloys were increased with the rise of the x value from 0.2 to 0.3 and the hydrogen storage capacity was obviously degraded simultaneously. It was found that the alloy had faster absorption kinetics as the proportion of Mg increased from 0.1 to 0.3.
基金the Youth Innovation Promotion Association,Chinese Academy of Science(No.2019263)the National Natural Science Foundation of China(No.12105355).
文摘A ZrV_(2)alloy is typically susceptible to poisoning by impurity gases,which causes a considerable reduction in the hydrogen storage properties of the alloy.In this study,the adsorption characteristics of oxygen on ZrV_(2)surfaces doped with Hf,Ti,and Pd are investigated,and the effect of oxygen on the hydrogen storage performance of the alloy was discussed.Subsequently,the adsorption energy,bond-length change,density of states,and differential charge density of the alloy before and after doping are analyzed using the first-principles method.The theoretical results show that Ti doping has a limited effect on the adsorption of oxygen atoms on the ZrV_(2)surface,whereas Hf doping decreases the adsorption energy of oxygen on the ZrV_(2)surface.Oxygen atoms are more difficult to adsorb at most adsorption sites on Pd-substituting surfaces,which indicates that Pd has the best anti-poisoning properties,followed by Hf.The analysis of the differential charge density and partial density of states show that the electron interaction between the oxygen atom and surface atom of the alloys is weakened,and the total energy is reduced after Hf and Pd doping.Based on theoretical calculations,the hydrogen absorption kinetics of ZrV_(2),Zr_(0.9)Hf_(0.1)V_(2),and Zr(V_(0.9)Pd_(0.1))_(2) alloys are studied in a hydrogen-oxygen mixture of 0.5 vol%O_(2) at 25℃.The experimental results show that the hydrogen storage capacities of ZrV_(2),Zr_(0.9)Hf_(0.1)V_(2),and Zr(V_(0.9)Pd_(0.1))_(2) decrease to 19%,69%,and 80%of their original values,respectively.The order of alloy resistance to 0.5 vol%O_(2) poisoning is Zr(V_(0.9)Pd_(0.1))_(2)>Zr_(0.9)Hf_(0.1)V_(2)>ZrV_(2).Pd retains its original hydrogen absorption performance to a greater extent than undoped surfaces,and it has the strongest resistance to poisoning,which is consistent with previous theoretical calculations.
基金supported by the Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences,the support from the Strategic Priority Research Program on Space Science(grant Nos.XDA15360300,XDA15360000,XDA15360102,XDA15052700 and E02212A02S)of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(NSFC,Grant No.12173038)and BeiDou navigation system。
文摘Realtime trigger and localization of bursts are the key functions of GECAM,an all-sky gamma-ray monitor launched on 2020 December 10.We developed a multifunctional trigger and localization software operating in the CPU of the GECAM Electronic Box.This onboard software has the following features:high trigger efficiency for real celestial bursts with a suppression of false triggers caused by charged particle bursts and background fluctuation,dedicated localization algorithm optimized for both short and long bursts,and low time latency of the trigger information which is downlinked through the Global Short Message Communication service of the global BeiDou navigation system.This paper provides a detailed description of the design and development of the trigger and localization software system for GECAM.It covers the general design,workflow,the main functions,and the algorithms used in the system.The paper also includes on-ground trigger tests using simulated gamma-ray bursts generated by a dedicated X-ray tube,as well as an overview of the performance for real celestial bursts during its in-orbit operation.