Understan ding the mechanism of harmful algal bloom formation is vital for effectively preventing algal bloom outbreaks in coastal environments.Karenia spp.blooms in the East China Sea show a significant correlation w...Understan ding the mechanism of harmful algal bloom formation is vital for effectively preventing algal bloom outbreaks in coastal environments.Karenia spp.blooms in the East China Sea show a significant correlation with nutrient regimes.However,the impact of key components of nutrients,especially dissolved organic nitrogen(DON),on the blooms of Karenia spp.is not clear.Quantitative research is still lacking.In this study,the cruise observations,field mesocosm-flask culture experiments,and a multinitrogen-tri-phytoplankton-detritus model(NTPD) are combined to reveal the quantitative influence of nutrient regimes on the shift of Prorocentrum donghaiense and Karenia spp.in the East China Sea.It has a synchronism rhythm of diatom-P.donghaienseKarenia spp.-diatom loop in the field culture experiment,which is consistent with the results of the cruise observation.The results showed that the processes of terrigenous DON(TeDON) and dissolved inorganic nitrogen(DIN:NO_(3)^(-)-N,NH_(4)^(+)-N) absorption promoted P.donghaiense to become the dominant algae in the community;whereas the processes of DON from P.donghaiense absorption promoted Karenia spp.to become the dominant algae in ambient DIN exhaustion.In addition,the three-dimensional fluorescence components of humus C,tyrosine and fulvic acid can indicate the processes of growth and extinction of P.donghaiense and Karenia spp.,respectively.This study infers that P.donghaiense and Karenia spp.regime shift mechanism associated with the nutrient regime in coastal waters,which provides a scientific basis for the environmental management of coastal eco system health.展开更多
基金The National Natural Science Foundation of China under contract No.42130403the Fundamental Research Funds for the Central Universities under contract No.202362003the National Key Research&Development Program of China under contract No.2017YFC1404300。
文摘Understan ding the mechanism of harmful algal bloom formation is vital for effectively preventing algal bloom outbreaks in coastal environments.Karenia spp.blooms in the East China Sea show a significant correlation with nutrient regimes.However,the impact of key components of nutrients,especially dissolved organic nitrogen(DON),on the blooms of Karenia spp.is not clear.Quantitative research is still lacking.In this study,the cruise observations,field mesocosm-flask culture experiments,and a multinitrogen-tri-phytoplankton-detritus model(NTPD) are combined to reveal the quantitative influence of nutrient regimes on the shift of Prorocentrum donghaiense and Karenia spp.in the East China Sea.It has a synchronism rhythm of diatom-P.donghaienseKarenia spp.-diatom loop in the field culture experiment,which is consistent with the results of the cruise observation.The results showed that the processes of terrigenous DON(TeDON) and dissolved inorganic nitrogen(DIN:NO_(3)^(-)-N,NH_(4)^(+)-N) absorption promoted P.donghaiense to become the dominant algae in the community;whereas the processes of DON from P.donghaiense absorption promoted Karenia spp.to become the dominant algae in ambient DIN exhaustion.In addition,the three-dimensional fluorescence components of humus C,tyrosine and fulvic acid can indicate the processes of growth and extinction of P.donghaiense and Karenia spp.,respectively.This study infers that P.donghaiense and Karenia spp.regime shift mechanism associated with the nutrient regime in coastal waters,which provides a scientific basis for the environmental management of coastal eco system health.