The efficient limitation of the"shuttle effect"of polysulfide from the rational construction of electrocatalysts to accelerate the redox kinetics of polysulfides is extremely important.In this work,the cobal...The efficient limitation of the"shuttle effect"of polysulfide from the rational construction of electrocatalysts to accelerate the redox kinetics of polysulfides is extremely important.In this work,the cobalt/Nickel bimetallic alloy polyhedrons decorated on layered TiO_(2)heterostructure(Co Ni@TiO_(2)/C)derived from MXene and bimetallic metal-organic framework have been prepared through liquid-phase deposition and high-temperature annealing processes.This heterostructure presents excellent electrical conductivity,which facilitates ion diffusion and electron transfer within the battery.Besides,the heterostructure from anchoring the Co Ni bimetallic alloy on the layered TiO_(2)ensures the full exposure of active sites and accelerates polysulfide redox kinetics through chemisorption and catalytic conversion.Considering these advantages mentioned above,when applied as the lithium-sulfur batteries(LSBs)separator modifier,the cell assembled from the Co Ni@TiO_(2)/C modified separator demonstrates high specific capacity(1481.7 mAh/g at 0.5 C),superior rate capability(855.5 mAh/g at 3 C)and excellent cycling performance,which can maintain the high capacity of 856.09 mAh/g after 300 cycles with low capacity decay rate of 0.09%per cycle.Even under a high sulfur loading of 4.4 mg/cm^(2),the cell can still present excellent cycling stability.This study paves the way for the design of novel material for the construction of an outstanding functional separator layer and shines the light on the effective and feasible way for the inhibition of shuttle effect in lithium-sulfur batteries.展开更多
Owing to the advantages of high energy density,low cost,abundant sulfur reserves and environmentally friendly nature,lithium-sulfur batteries(LSBs)were considered as one of the potential candidates of energy storage d...Owing to the advantages of high energy density,low cost,abundant sulfur reserves and environmentally friendly nature,lithium-sulfur batteries(LSBs)were considered as one of the potential candidates of energy storage devices for the next generation.However,the significant challenges in this area stem from the sluggish reaction kinetics of the insoluble Li_(2)S product and the capacity degradation triggered by the severe shuttle effect of polysulfides.It has been firmly established through numerous studies that modifying separators is an effective approach to enhance the properties of LSBs by facilitating the catalytic kinetic conversion and chemical adsorption of lithium polysulfides(Li PSs).In this work,we report a straightforward method for fabrication of the phosphorus doped porous CeO_(2)(P-CeO_(2))as separator modifier to accelerate the catalytic kinetic conversion of polysulfides and effectively inhibit the shuttle effect in LSBs.Through coin batteries tests,P-CeO_(2)modified PP separator(P-CeO_(2)//PP)exhibits remarkable electrochemical performance.It demonstrates a high initial capacity of 1180 mAh/g at 0.5 C,surpassing the performance of the bare CeO_(2)//PP separator.Furthermore,the P-CeO_(2)//PP separator demonstrates enhanced cycling stability,with a low-capacity fading rate of only 0.048%per cycle over 1000 cycles at 2 C.In compared with bare CeO_(2)//PP,P-CeO_(2)//PP exhibits high redox peak current,enhanced adsorption property of Li_(2)S_(6)and early Li_(2)S precipitation.These results highlight the superior performance of the P-CeO_(2)//PP separator compared to the bare CeO_(2)//PP separator.Hence,this research presents a successful strategy for the modification of LIBs separator with improved electrochemical performance and cycle stability.展开更多
[ Objective] This study aimed to explore the relationship between self-incompatibility strength and characteristics related to pollination and fertilization of different apricot varieties in Xinjiang. [ Method] The po...[ Objective] This study aimed to explore the relationship between self-incompatibility strength and characteristics related to pollination and fertilization of different apricot varieties in Xinjiang. [ Method] The pollen amount, pollen germination rate, pollen tube growth status and fruiting setting rate by self-pollina- tion of 34 apricot cultivars in Xinjiang were determined, to analyze the self-incompatibility of different apricot cultivars. [ Result] The average pollen amount per anther of 34 apricot eultivars was 1 213.7, and the average pollen germination rate was 46.0%. There were great differences in the self-incompatlbility of different cuhivars ; most pollen tubes of the euhivars with high self-incompatibility stopped elongating at 1/3 or 1/2 part of the styles, and only a few pollen tubes of the euhivars with low self-incompatibility reached the ovary, and the normal fertilization ratio was significantly lower than that in self-compatible cultivars. [ Conclusion] Among the 34 apricot cuhivars, only 6 cuhivars were self-compatible and the others exhibited gametophyte self-incompatibility. In addition, the fruit setting rate by self-pollination was low.展开更多
Subways,underground logistics systems and underground parking,as the primary facilities types of underground,contribute significantly to the achievement of carbon–neutral cities by moving surface transportation to un...Subways,underground logistics systems and underground parking,as the primary facilities types of underground,contribute significantly to the achievement of carbon–neutral cities by moving surface transportation to underground,thereby releasing surface space for the creation of more urban blue-green space for carbon sink.Therefore,in-depth studies on carbon neutrality strategies as well as reliable layout optimization solutions of these three types of underground facilities are required.This study proposes a spatial layout optimization strategy for carbon neutrality using underground hydrogen storage and geothermal energy for these three types of underground facilities employing a multi-agent system model.First,three spatial layout relationships,competition,coordination,and followership,between five underground facilities that contribute to emission reduction were investigated.Second,the implementation steps for optimizing the spatial layout of underground facilities were determined by defining the behavioral guidelines for spatial environment,underground facility,and synergistic agent.Finally,using the Tianfu New District in Chengdu City,China,as a case study,layouts of underground facilities under three different underground space development scenarios were simulated to verify the model.The findings of this study address the gap in the research on underground spatial facilities and their layout optimization in response to emission reduction.This study provided a significant reference for the study of underground space and underground resources at the planning level to aid in achieving carbon–neutral cities.展开更多
基金supported by National Natural Science Foundation of China(Nos.52472194,52101243)Natural Science Foundation of Guangdong Province,China(No.2023A1515012619)the Science and Technology Planning Project of Guangzhou(No.202201010565)。
文摘The efficient limitation of the"shuttle effect"of polysulfide from the rational construction of electrocatalysts to accelerate the redox kinetics of polysulfides is extremely important.In this work,the cobalt/Nickel bimetallic alloy polyhedrons decorated on layered TiO_(2)heterostructure(Co Ni@TiO_(2)/C)derived from MXene and bimetallic metal-organic framework have been prepared through liquid-phase deposition and high-temperature annealing processes.This heterostructure presents excellent electrical conductivity,which facilitates ion diffusion and electron transfer within the battery.Besides,the heterostructure from anchoring the Co Ni bimetallic alloy on the layered TiO_(2)ensures the full exposure of active sites and accelerates polysulfide redox kinetics through chemisorption and catalytic conversion.Considering these advantages mentioned above,when applied as the lithium-sulfur batteries(LSBs)separator modifier,the cell assembled from the Co Ni@TiO_(2)/C modified separator demonstrates high specific capacity(1481.7 mAh/g at 0.5 C),superior rate capability(855.5 mAh/g at 3 C)and excellent cycling performance,which can maintain the high capacity of 856.09 mAh/g after 300 cycles with low capacity decay rate of 0.09%per cycle.Even under a high sulfur loading of 4.4 mg/cm^(2),the cell can still present excellent cycling stability.This study paves the way for the design of novel material for the construction of an outstanding functional separator layer and shines the light on the effective and feasible way for the inhibition of shuttle effect in lithium-sulfur batteries.
基金supported by National Natural Science Foundation of China(Nos.52472194,52101243)Natural Science Foundation of Guangdong Province,China(No.2023A1515012619)the Science and Technology Planning Project of Guangzhou(No.202201010565)。
文摘Owing to the advantages of high energy density,low cost,abundant sulfur reserves and environmentally friendly nature,lithium-sulfur batteries(LSBs)were considered as one of the potential candidates of energy storage devices for the next generation.However,the significant challenges in this area stem from the sluggish reaction kinetics of the insoluble Li_(2)S product and the capacity degradation triggered by the severe shuttle effect of polysulfides.It has been firmly established through numerous studies that modifying separators is an effective approach to enhance the properties of LSBs by facilitating the catalytic kinetic conversion and chemical adsorption of lithium polysulfides(Li PSs).In this work,we report a straightforward method for fabrication of the phosphorus doped porous CeO_(2)(P-CeO_(2))as separator modifier to accelerate the catalytic kinetic conversion of polysulfides and effectively inhibit the shuttle effect in LSBs.Through coin batteries tests,P-CeO_(2)modified PP separator(P-CeO_(2)//PP)exhibits remarkable electrochemical performance.It demonstrates a high initial capacity of 1180 mAh/g at 0.5 C,surpassing the performance of the bare CeO_(2)//PP separator.Furthermore,the P-CeO_(2)//PP separator demonstrates enhanced cycling stability,with a low-capacity fading rate of only 0.048%per cycle over 1000 cycles at 2 C.In compared with bare CeO_(2)//PP,P-CeO_(2)//PP exhibits high redox peak current,enhanced adsorption property of Li_(2)S_(6)and early Li_(2)S precipitation.These results highlight the superior performance of the P-CeO_(2)//PP separator compared to the bare CeO_(2)//PP separator.Hence,this research presents a successful strategy for the modification of LIBs separator with improved electrochemical performance and cycle stability.
基金Supported by Science and Technology Project of Xinjiang Uygur Autonomous Region"ResearchDemonstration of Utilization Technology of Special Fruit Tree Germplasm Resources in Xinjiang"(201130102-1)Key Discipline Pomology in Xinjiang Uygur Autonomous Region
文摘[ Objective] This study aimed to explore the relationship between self-incompatibility strength and characteristics related to pollination and fertilization of different apricot varieties in Xinjiang. [ Method] The pollen amount, pollen germination rate, pollen tube growth status and fruiting setting rate by self-pollina- tion of 34 apricot cultivars in Xinjiang were determined, to analyze the self-incompatibility of different apricot cultivars. [ Result] The average pollen amount per anther of 34 apricot eultivars was 1 213.7, and the average pollen germination rate was 46.0%. There were great differences in the self-incompatlbility of different cuhivars ; most pollen tubes of the euhivars with high self-incompatibility stopped elongating at 1/3 or 1/2 part of the styles, and only a few pollen tubes of the euhivars with low self-incompatibility reached the ovary, and the normal fertilization ratio was significantly lower than that in self-compatible cultivars. [ Conclusion] Among the 34 apricot cuhivars, only 6 cuhivars were self-compatible and the others exhibited gametophyte self-incompatibility. In addition, the fruit setting rate by self-pollination was low.
基金supported by the National Natural Science Foundation of China(Grant Nos.52378083 and 52078481)the Natural Science Foundation of Jiangsu Province(Grant No.BK20231488).
文摘Subways,underground logistics systems and underground parking,as the primary facilities types of underground,contribute significantly to the achievement of carbon–neutral cities by moving surface transportation to underground,thereby releasing surface space for the creation of more urban blue-green space for carbon sink.Therefore,in-depth studies on carbon neutrality strategies as well as reliable layout optimization solutions of these three types of underground facilities are required.This study proposes a spatial layout optimization strategy for carbon neutrality using underground hydrogen storage and geothermal energy for these three types of underground facilities employing a multi-agent system model.First,three spatial layout relationships,competition,coordination,and followership,between five underground facilities that contribute to emission reduction were investigated.Second,the implementation steps for optimizing the spatial layout of underground facilities were determined by defining the behavioral guidelines for spatial environment,underground facility,and synergistic agent.Finally,using the Tianfu New District in Chengdu City,China,as a case study,layouts of underground facilities under three different underground space development scenarios were simulated to verify the model.The findings of this study address the gap in the research on underground spatial facilities and their layout optimization in response to emission reduction.This study provided a significant reference for the study of underground space and underground resources at the planning level to aid in achieving carbon–neutral cities.