Objective:Cervical cancer remains a global health challenge with substantial disparities between countries.High-quality colposcopy is essential for cervical cancer prevention,yet training opportunities remain inadequa...Objective:Cervical cancer remains a global health challenge with substantial disparities between countries.High-quality colposcopy is essential for cervical cancer prevention,yet training opportunities remain inadequate worldwide.We developed the Intelligent Digital Education Tool for Colposcopy(iDECO)to address training gaps and evaluated the effect across diverse international settings.Methods:Six pre-post interventional training programmes were conducted in China,Mexico,and Mongolia from December 2024 to May 2025.A total of 369 trainees from 87 centers participated in a 3-week online training programme using iDECO,a bilingual webbased platform featuring authentic colposcopy cases,gamified learning pathways,and personalized analytics.The primary outcomes included colposcopy competence in general assessment,colposcopic findings,diagnostic accuracy,and management decisions.The secondary outcomes focused on participant feedback and satisfaction.Results:Of 369 participants who completed pretests,333(90.24%)completed post-training assessments.Significant improvements were observed across all competency domains.Diagnostic accuracy increased with an odds ratio(OR)of 1.72(95%CI:1.60±1.86)with the greatest gains in high-grade lesion identification[OR=2.27(95%CI:1.94±2.64)].Squamocolumnar junction visibility and transformation zone type assessments improved with ORs of 1.41(95%CI:1.31±1.51)and 1.87(95%CI:1.73±2.01),respectively.Biopsy decision-making accuracy also showed significant improvement[OR=2.09(95%CI:1.91±2.29)].International participants showed lower baseline performance but achieved the greatest improvements.Greater than 85%of participants rated the training highly satisfactory and 83.56%preferred intelligent training over traditional methods.Conclusions:iDECO-based training significantly improved colposcopy competence across diverse international settings with high user satisfaction.These findings support the potential for worldwide implementation of intelligent digital training tools to address colposcopy training gaps and contribute to the elimination of cervical cancer.展开更多
Nowadays,as the number of textual data is exponentially increasing,sentiment analysis has become one of the most significant tasks in natural language processing(NLP)with increasing attention.Traditional Chinese senti...Nowadays,as the number of textual data is exponentially increasing,sentiment analysis has become one of the most significant tasks in natural language processing(NLP)with increasing attention.Traditional Chinese sentiment analysis algorithms cannot make full use of the order information in context and are inefficient in sentiment inference.In this paper,we systematically reviewed the classic and representative works in sentiment analysis and proposed a simple but efficient optimization.First of all,FastText was trained to get the basic classification model,which can generate pre-trained word vectors as a by-product.Secondly,Bidirectional Long Short-Term Memory Network(Bi-LSTM)utilizes the generated word vectors for training and then merges with FastText to make comprehensive sentiment analysis.By combining FastText and Bi-LSTM,we have developed a new fast sentiment analysis,called FAST-BiLSTM,which consistently achieves a balance between performance and speed.In particular,experimental results based on the real datasets demonstrate that our algorithm can effectively judge sentiments of users’comments,and is superior to the traditional algorithm in time efficiency,accuracy,recall and F1 criteria.展开更多
MoS_(2) is a typical electrocatalyst for hydrogen evolution reaction(HER),but the HER activity is spoilt by intensive adsorption towards H^(*),which requires further improvement.For n-type MoS_(2),the construction of ...MoS_(2) is a typical electrocatalyst for hydrogen evolution reaction(HER),but the HER activity is spoilt by intensive adsorption towards H^(*),which requires further improvement.For n-type MoS_(2),the construction of p-n heterojunction with p-type MoO_(3) can reverse this situation,because inner electronic field in p-n heterojunction can facilitate H^(*) desorption.Based on this hypothesis,p-n heterojunction is built between MoS_(2) and MoO_(3) with polyoxometalate compound as precursor.The obtained MoO_(3)/MoS_(2) exhibits excellent HER activity,which only requires 68 mV to obtain 10 mA/cm^(2).With MoO_(3)/MoS_(2) as cathode material and Zn slice as anode,Zn-H^(+)battery is assembled.Its open circuit voltage achieves 1.11 V with short circuit current 151.4 mA/cm^(2).The peak power density of this Zn-H^(+) battery reaches 47.6 mW/cm^(2).When discharge at 10 mA/cm^(2),the specific capacity and energy density reach 728 mAh/g and 759 Wh/kg.In this process,H_(2) production rate of Zn-H^(+) battery achieves 364μmol/h with Faradic efficiency 97.8%.It realizes H_(2) production and electricity generation simultaneously.展开更多
In this work, we make the best use of the vanadium element; a series of A1-V-B alloys and VB2/A390 composite alloys were fabricated. For Ak-10V-6B alloy, the grain size of VB2 can be controlled within about 1 μm and ...In this work, we make the best use of the vanadium element; a series of A1-V-B alloys and VB2/A390 composite alloys were fabricated. For Ak-10V-6B alloy, the grain size of VB2 can be controlled within about 1 μm and is distributed uniformly in the AI matrix. Further, it can be found that VB2 promises to be a useful reinforcement particle for piston alloy. The addition of VB2 can improve the mechanical properties of the A390 composite alloys significantly. The results show that with 1 % VB2 addition, A390 composite alloy exhibits the best performance. Compared with the A390 alloy, the coefficient of thermal expansion is 13.2 × 10^-6 K-1, which decreased by 12.6%; the average Brinell hardness can reach 156.5 HB, wear weight loss decreased by 28.9% and ultimate tensile strength at 25℃ (UTS25 ℃) can reach 355 MPa, which increased by 36.5%.展开更多
An effect of inhibition of tumor necrosis factor-α(TNF-α)on differentiation of mesenchymal stromal cells(MSCs)has been demonstrated,but the exact mechanisms that govern MSCs differentiation remain to be further eluc...An effect of inhibition of tumor necrosis factor-α(TNF-α)on differentiation of mesenchymal stromal cells(MSCs)has been demonstrated,but the exact mechanisms that govern MSCs differentiation remain to be further elucidated.Here,we show that TNF-αinhibits the differentiation of MSCs to sweat glands in a specific sweat gland-inducing environment,accompanied with reduced expression of Nanog,a core pluripotency factor.We elucidated that fat mass and obesity-associated protein(FTO)-mediated m^6 A demethylation is involved in the regulation of MSCs differentiation potential.Exposure of MSCs to TNF-αreduced expression of FTO,which demethylated Nanog m RNA.Reduced expression of FTO increased Nanog m RNA methylation,decreased Nanog m RNA and protein expression,and significantly inhibited MSCs capacity for differentiation to sweat gland cells.Our finding is the first to elucidate the functional importance of m^6 A modification in MSCs,providing new insights that the microenvironment can regulate the multipotency of MSCs at the post-transcriptional level.Moreover,to maintain differentiation capacity of MSCs by regulating m^6 A modification suggested a novel potential therapeutic target for stem cellmediated regenerative medicine.展开更多
Background:Mammary progenitor cells(MPCs)maintain their reproductive potency through life,and their specific microenvironments exert a deterministic control over these cells.MPCs provides one kind of ideal tools for s...Background:Mammary progenitor cells(MPCs)maintain their reproductive potency through life,and their specific microenvironments exert a deterministic control over these cells.MPCs provides one kind of ideal tools for studying engineered microenvironmental influence because of its accessibility and continually undergoes postnatal developmental changes.The aim of our study is to explore the critical role of the engineered sweat gland(SG)microenvironment in reprogramming MPCs into functional SG cells.Methods:We have utilized a three-dimensional(3D)SG microenvironment composed of gelatin-alginate hydrogels and components from mouse SG extracellular matrix(SG-ECM)proteins to reroute the differentiation of MPCs to study the functions of this microenvironment.MPCs were encapsulated into the artificial SG microenvironment and were printed into a 3D cell-laden construct.The expression of specific markers at the protein and gene levels was detected after cultured 14 days.Results:Compared with the control group,immunofluorescence and gene expression assay demonstrated that MPCs encapsulated in the bioprinted 3D-SG microenvironment could significantly express the functional marker of mouse SG,sodium/potassium channel protein ATP1a1,and tend to express the specific marker of luminal epithelial cells,keratin-8.When the Shh pathway is inhibited,the expression of SG-associated proteins in MPCs under the same induction environment is significantly reduced.Conclusions:Our evidence proved the ability of differentiated mouse MPCs to regenerate SG cells by engineered SG microenvironment in vitro and Shh pathway was found to be correlated with the changes in the differentiation.These results provide insights into regeneration of damaged SG by MPCs and the role of the engineered microenvironment in reprogramming cell fate.展开更多
基金supported by CAMS Innovation Fund for Medical Sciences(CIFMS 2021-I2M-1-004)Tencent Sustainable Social Value Inclusive Health Lab and through the ChongQing Tencent Sustainable Development Foundation"Comprehensive Prevention and Control Demonstration Project for Eliminating Cervical Cancer and Breast Cancer in Low Health Resource Areas of China"(Project No.SD20240904145730)+1 种基金Tencent Sustainable Social Value Inclusive Health Lab(Project No.SSVPJ202307060001)Sanming Project of Medicine in Shenzhen(Project No.SZSM202211032)。
文摘Objective:Cervical cancer remains a global health challenge with substantial disparities between countries.High-quality colposcopy is essential for cervical cancer prevention,yet training opportunities remain inadequate worldwide.We developed the Intelligent Digital Education Tool for Colposcopy(iDECO)to address training gaps and evaluated the effect across diverse international settings.Methods:Six pre-post interventional training programmes were conducted in China,Mexico,and Mongolia from December 2024 to May 2025.A total of 369 trainees from 87 centers participated in a 3-week online training programme using iDECO,a bilingual webbased platform featuring authentic colposcopy cases,gamified learning pathways,and personalized analytics.The primary outcomes included colposcopy competence in general assessment,colposcopic findings,diagnostic accuracy,and management decisions.The secondary outcomes focused on participant feedback and satisfaction.Results:Of 369 participants who completed pretests,333(90.24%)completed post-training assessments.Significant improvements were observed across all competency domains.Diagnostic accuracy increased with an odds ratio(OR)of 1.72(95%CI:1.60±1.86)with the greatest gains in high-grade lesion identification[OR=2.27(95%CI:1.94±2.64)].Squamocolumnar junction visibility and transformation zone type assessments improved with ORs of 1.41(95%CI:1.31±1.51)and 1.87(95%CI:1.73±2.01),respectively.Biopsy decision-making accuracy also showed significant improvement[OR=2.09(95%CI:1.91±2.29)].International participants showed lower baseline performance but achieved the greatest improvements.Greater than 85%of participants rated the training highly satisfactory and 83.56%preferred intelligent training over traditional methods.Conclusions:iDECO-based training significantly improved colposcopy competence across diverse international settings with high user satisfaction.These findings support the potential for worldwide implementation of intelligent digital training tools to address colposcopy training gaps and contribute to the elimination of cervical cancer.
基金supported by the National Science Foundation of China(No.61771140)the 2017 Natural Science Foundation of Fujian Provincial Science&Technology Department(No.2018J01560)the 2016 Fujian Education and Scientific Research Project for Young and Middle-aged Teachers(JAT170522).
文摘Nowadays,as the number of textual data is exponentially increasing,sentiment analysis has become one of the most significant tasks in natural language processing(NLP)with increasing attention.Traditional Chinese sentiment analysis algorithms cannot make full use of the order information in context and are inefficient in sentiment inference.In this paper,we systematically reviewed the classic and representative works in sentiment analysis and proposed a simple but efficient optimization.First of all,FastText was trained to get the basic classification model,which can generate pre-trained word vectors as a by-product.Secondly,Bidirectional Long Short-Term Memory Network(Bi-LSTM)utilizes the generated word vectors for training and then merges with FastText to make comprehensive sentiment analysis.By combining FastText and Bi-LSTM,we have developed a new fast sentiment analysis,called FAST-BiLSTM,which consistently achieves a balance between performance and speed.In particular,experimental results based on the real datasets demonstrate that our algorithm can effectively judge sentiments of users’comments,and is superior to the traditional algorithm in time efficiency,accuracy,recall and F1 criteria.
基金supported by National Natural Science Foundation of China(No.22171039)Fundamental Research Funds for the Central University(No.N2025035)。
文摘MoS_(2) is a typical electrocatalyst for hydrogen evolution reaction(HER),but the HER activity is spoilt by intensive adsorption towards H^(*),which requires further improvement.For n-type MoS_(2),the construction of p-n heterojunction with p-type MoO_(3) can reverse this situation,because inner electronic field in p-n heterojunction can facilitate H^(*) desorption.Based on this hypothesis,p-n heterojunction is built between MoS_(2) and MoO_(3) with polyoxometalate compound as precursor.The obtained MoO_(3)/MoS_(2) exhibits excellent HER activity,which only requires 68 mV to obtain 10 mA/cm^(2).With MoO_(3)/MoS_(2) as cathode material and Zn slice as anode,Zn-H^(+)battery is assembled.Its open circuit voltage achieves 1.11 V with short circuit current 151.4 mA/cm^(2).The peak power density of this Zn-H^(+) battery reaches 47.6 mW/cm^(2).When discharge at 10 mA/cm^(2),the specific capacity and energy density reach 728 mAh/g and 759 Wh/kg.In this process,H_(2) production rate of Zn-H^(+) battery achieves 364μmol/h with Faradic efficiency 97.8%.It realizes H_(2) production and electricity generation simultaneously.
基金supported by the National Basic Research Program of China ("973 Program", No. 2012CB825702)the National Natural Science Foundation of China (Nos. 51001065 and 51071097)+1 种基金the Taishan Scholar Blue Industry Talents Support Program of Shandong Province (2013)Young Scholars Program of Shandong University
文摘In this work, we make the best use of the vanadium element; a series of A1-V-B alloys and VB2/A390 composite alloys were fabricated. For Ak-10V-6B alloy, the grain size of VB2 can be controlled within about 1 μm and is distributed uniformly in the AI matrix. Further, it can be found that VB2 promises to be a useful reinforcement particle for piston alloy. The addition of VB2 can improve the mechanical properties of the A390 composite alloys significantly. The results show that with 1 % VB2 addition, A390 composite alloy exhibits the best performance. Compared with the A390 alloy, the coefficient of thermal expansion is 13.2 × 10^-6 K-1, which decreased by 12.6%; the average Brinell hardness can reach 156.5 HB, wear weight loss decreased by 28.9% and ultimate tensile strength at 25℃ (UTS25 ℃) can reach 355 MPa, which increased by 36.5%.
基金funded in part by the National Natural Science Foundation of China(81571909,81721092,81701906)the National Key R&D Program of China(2017YFC1103300)+1 种基金the Beijing Natural Science Foundation(7174352)Fostering Funds of Chinese PLA General Hospital for National Distinguished Young Scholar Science Fund(2017-JQPY-002)
文摘An effect of inhibition of tumor necrosis factor-α(TNF-α)on differentiation of mesenchymal stromal cells(MSCs)has been demonstrated,but the exact mechanisms that govern MSCs differentiation remain to be further elucidated.Here,we show that TNF-αinhibits the differentiation of MSCs to sweat glands in a specific sweat gland-inducing environment,accompanied with reduced expression of Nanog,a core pluripotency factor.We elucidated that fat mass and obesity-associated protein(FTO)-mediated m^6 A demethylation is involved in the regulation of MSCs differentiation potential.Exposure of MSCs to TNF-αreduced expression of FTO,which demethylated Nanog m RNA.Reduced expression of FTO increased Nanog m RNA methylation,decreased Nanog m RNA and protein expression,and significantly inhibited MSCs capacity for differentiation to sweat gland cells.Our finding is the first to elucidate the functional importance of m^6 A modification in MSCs,providing new insights that the microenvironment can regulate the multipotency of MSCs at the post-transcriptional level.Moreover,to maintain differentiation capacity of MSCs by regulating m^6 A modification suggested a novel potential therapeutic target for stem cellmediated regenerative medicine.
基金supported in part by the National Nature Science Foundation of China(81571909,81701906,81830064,81721092)the National Key Research Development Plan(2017YFC1103300)+1 种基金Military Logistics Research Key Project(AWS17J005)Fostering Funds of Chinese PLA General Hospital for National Distinguished Young Scholar Science Fund(2017-JQPY-002).
文摘Background:Mammary progenitor cells(MPCs)maintain their reproductive potency through life,and their specific microenvironments exert a deterministic control over these cells.MPCs provides one kind of ideal tools for studying engineered microenvironmental influence because of its accessibility and continually undergoes postnatal developmental changes.The aim of our study is to explore the critical role of the engineered sweat gland(SG)microenvironment in reprogramming MPCs into functional SG cells.Methods:We have utilized a three-dimensional(3D)SG microenvironment composed of gelatin-alginate hydrogels and components from mouse SG extracellular matrix(SG-ECM)proteins to reroute the differentiation of MPCs to study the functions of this microenvironment.MPCs were encapsulated into the artificial SG microenvironment and were printed into a 3D cell-laden construct.The expression of specific markers at the protein and gene levels was detected after cultured 14 days.Results:Compared with the control group,immunofluorescence and gene expression assay demonstrated that MPCs encapsulated in the bioprinted 3D-SG microenvironment could significantly express the functional marker of mouse SG,sodium/potassium channel protein ATP1a1,and tend to express the specific marker of luminal epithelial cells,keratin-8.When the Shh pathway is inhibited,the expression of SG-associated proteins in MPCs under the same induction environment is significantly reduced.Conclusions:Our evidence proved the ability of differentiated mouse MPCs to regenerate SG cells by engineered SG microenvironment in vitro and Shh pathway was found to be correlated with the changes in the differentiation.These results provide insights into regeneration of damaged SG by MPCs and the role of the engineered microenvironment in reprogramming cell fate.