On the assumption that the resonant surface plasmons on a spherical nanoparticle are formed by standing waves of two counter-propagating surface plasmon waves along the surface, by using Mie theory simulation, we find...On the assumption that the resonant surface plasmons on a spherical nanoparticle are formed by standing waves of two counter-propagating surface plasmon waves along the surface, by using Mie theory simulation, we find that the dispersions of surface plasmon resonant modes supported by silver nanospheres match with those of the surface plasmons on a semiinfinite medium-silver interface very well. This suggests that the resonant surface plasmons of a metal nanosphere can be treated as a propagating surface plasmon wave.展开更多
We report a facile method of preparing novel branched silver nanowire structures such as Y-shaped, K-shaped and other multi-branched nanowires. These branched nanostructures are synthesized by reducing silver nitrate ...We report a facile method of preparing novel branched silver nanowire structures such as Y-shaped, K-shaped and other multi-branched nanowires. These branched nanostructures are synthesized by reducing silver nitrate (AgNO3) in polyethylene glycol (PEG) with polyvinglpyrrolidone (PVP) as capping agent. Statistical data indicate that for the "y" typed branched nanowire, the branches grow out from the side of the trunk nanowire in a preferential orientation with an angle of 55° between the branch and the trunk. Transmission electron microscopy (TEM) studies indicate that the defects on silver nanowires could support the growth of branched nanowires. Conditions such as the molar ratio of PVP/AgNO3, the reaction temperature, and the degree of polymerization of reducing agent and PVP play important roles in determining the yield of the silver branches. Due to the rough surface, these branched nanostructures can be used as efficient substrates for surface-enhanced Raman scattering applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11704058)the Fundamental Research Funds for the Central Universities,China(Grant No.DUT16RC(3)111)
文摘On the assumption that the resonant surface plasmons on a spherical nanoparticle are formed by standing waves of two counter-propagating surface plasmon waves along the surface, by using Mie theory simulation, we find that the dispersions of surface plasmon resonant modes supported by silver nanospheres match with those of the surface plasmons on a semiinfinite medium-silver interface very well. This suggests that the resonant surface plasmons of a metal nanosphere can be treated as a propagating surface plasmon wave.
文摘We report a facile method of preparing novel branched silver nanowire structures such as Y-shaped, K-shaped and other multi-branched nanowires. These branched nanostructures are synthesized by reducing silver nitrate (AgNO3) in polyethylene glycol (PEG) with polyvinglpyrrolidone (PVP) as capping agent. Statistical data indicate that for the "y" typed branched nanowire, the branches grow out from the side of the trunk nanowire in a preferential orientation with an angle of 55° between the branch and the trunk. Transmission electron microscopy (TEM) studies indicate that the defects on silver nanowires could support the growth of branched nanowires. Conditions such as the molar ratio of PVP/AgNO3, the reaction temperature, and the degree of polymerization of reducing agent and PVP play important roles in determining the yield of the silver branches. Due to the rough surface, these branched nanostructures can be used as efficient substrates for surface-enhanced Raman scattering applications.