Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning fr...Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape.展开更多
An organoid is a three-dimensional(3D)cell culture model that can reproduce the distinct structure and inherent functionality of certain organs.Nevertheless,a major limitation of organoids is the absence of a complex ...An organoid is a three-dimensional(3D)cell culture model that can reproduce the distinct structure and inherent functionality of certain organs.Nevertheless,a major limitation of organoids is the absence of a complex vascular network,thus restricting the supply of oxygen and essential nutrients.Coupled with their inherent size constraints and metabolite accumulation,it is challenging for organoids to replicate the natural intricacies of organs,thereby limiting their applicability.To overcome the challenges associated with this technology,we developed a culture platform to cultivate tumors or organ-derived organoids up to the centimeter scale.Initially,a customized organoid-on-a-chip including a microvascular network at the micron scale was designed using 3D printing.Further,by integrating an infusion device,the chip ensures an adequate supply of nutrients and fluid immersion while mimicking blood flow dynamics.Our method overcomes the issue of the limited size of organoids due to insufficient nutrient access,making it possible to produce large-scale tumor and normal tissue models in vitro,while providing insights into drug efficacy and toxicology evaluation as well as standardized organoid production.展开更多
Dear Editor,Influenza viruses cause significant mortality and morbidity in humans.Vaccination is currently the most effective way to combat the virus(Perofsky and Nelson,2020).Unfortunately,the influenza virus frequen...Dear Editor,Influenza viruses cause significant mortality and morbidity in humans.Vaccination is currently the most effective way to combat the virus(Perofsky and Nelson,2020).Unfortunately,the influenza virus frequently changes its antigenicity through rapid mutations,leading to decreased vaccine efficacy or even failure.To improve vaccine effectiveness,it is necessary to monitor antigenic variation and update vaccine strains when significant antigenic variation occurs(Perofsky and Nelson,2020;Malik et al.,2024).展开更多
During the final proofing stage of the paper,the wrong version of Fig.2 was accidently used when replacing it with a high-resolution version.The star and circle marks were missing in the published version.
Graphene has enormous potential to capture CO_(2)due to its unique properties and cost-effectiveness.However,graphene-based adsorbents have drawbacks of lower CO_(2)adsorption capacity and poor selectivity.This work d...Graphene has enormous potential to capture CO_(2)due to its unique properties and cost-effectiveness.However,graphene-based adsorbents have drawbacks of lower CO_(2)adsorption capacity and poor selectivity.This work demonstrates a one-step rapid and sustainable N_(2)/H_(2)plasma treatment process to prepare graphene-based sorbent material with enhanced CO_(2)adsorption performance.Plasma treatment directly enriches amine species,increases surface area,and improves textural properties.The CO_(2)adsorption capacity increases from 1.6 to 3.3 mmol/g for capturing flue gas,and from 0.14 to 1.3 mmol/g for direct air capture (DAC).Importantly,the electrothermal property of the plasma-modified aerogels has been significantly improved,resulting in faster heating rates and significantly reducing energy consumption compared to conventional external heating for regeneration of sorbents.Modified aerogels display improved selectivity of 42 and 87 after plasma modification for 5 and 10 min,respectively.The plasma-treated aerogels display minimal loss between 17%and 19% in capacity after 40 adsorption/desorption cycles,rendering excellent stability.The N_(2)/H_(2)plasma treatment of adsorbent materials would lower energy expenses and prevent negative effects on the global economy caused by climate change.展开更多
Electron-positron colliders operating in the GeV center-of-mass range,or tau-charm energy region,have been proved to enable competitive frontier research due to several unique features.With the progress of high-energy...Electron-positron colliders operating in the GeV center-of-mass range,or tau-charm energy region,have been proved to enable competitive frontier research due to several unique features.With the progress of high-energy physics in the last two decades,a new-generation Tau-Charm factory,called the Super Tau-Charm Facility(STCF),has been actively promoted by the particle physics community in China.STCF has the potential to address fundamental questions such as the essence of color confinement and the matter-antimatter asymmetry within the next decades.The main design goals of the STCF are a center-of-mass energy ranging from 2 to 7 GeV and a luminosity surpassing 5×10^(34)cm^(−2)s^(−1)that is optimized at a center-of-mass energy of 4 GeV,which is approximately 50 times that of the currently operating Tau-Charm factory-BEPCII.The STCF accelerator has two main parts:a double-ring collider with a crab-waist collision scheme and an injector that provides top-up injections for both electron and positron beams.As a typical third-generation electron-positron circular collider,the STCF accelerator faces many challenges in both accelerator physics and technology.In this paper,the conceptual design of the STCF accelerator complex is presented,including the ongoing efforts and plans for technological research and develop-ment,as well as the required infrastructure.The STCF project aims to secure support from the Chinese central government for its construction during the 15th Five-Year Plan(2026-2030).展开更多
厌氧消化1号模型(Anaerobic Digestion Model No.1,ADM1)量化表达了厌氧发酵过程中各类物质的转化过程,在研究和咨询领域获得了广泛的发展和应用,但ADM1并没有过多考虑物理化学过程,这些物化过程虽然并不直接经由微生物发生,但它们却可...厌氧消化1号模型(Anaerobic Digestion Model No.1,ADM1)量化表达了厌氧发酵过程中各类物质的转化过程,在研究和咨询领域获得了广泛的发展和应用,但ADM1并没有过多考虑物理化学过程,这些物化过程虽然并不直接经由微生物发生,但它们却可以影响生化过程。通过建立ADM1气液转换模型,并基于生物甲烷潜力(BMP)测试建立液相气体浓度变化映射函数,将多元隐性模型转化为k_(L)a的显性模型,基于对k_(L)a参数的实时测算,对序批式投料的CSTR反应器搅拌装置设置变频激励机制,提高气液转换效率,促进沼气的快速逸出。经撬装CSTR中试设备连续实验测试,该智能控制模型相比传统运行方式容积产气率提升15.5%,对提升规模化沼气工程的生产效率具有显著的指导和应用价值。基于边云协同的智能控制为规模化生物燃气项目的智慧管控提供了全新的技术范式。展开更多
Resident and inflammatory macrophages are essential effectors of the innate immune system. These cells provide innate immune defenses and regulate tissue and organ homeostasis. In addition to their roles in diseases s...Resident and inflammatory macrophages are essential effectors of the innate immune system. These cells provide innate immune defenses and regulate tissue and organ homeostasis. In addition to their roles in diseases such as cancer, obesity and osteoarthritis, they play vital roles in tissue repair and disease rehabilitation. Macrophages and other inflammatory cells are recruited to tissue injury sites where they promote changes in the microenvironment. Among the inflammatory cell types, only macrophages have both pro-inflammatory (Ml) and anti-inflammatory (M2) actions, and M2 macrophages have four subtypes. The co-action of Ml and M2 subtypes can create a favorable microenvironment, releasing cytokines for damaged tissue repair. In this review, we discuss the activation of macrophages and their roles in severe peripheral nerve injury. We also describe the therapeutic potential of macrophages in nerve tissue engineering treatment and highlight approaches for enhancing M2 cell-mediated nerve repair and regeneration.展开更多
Land use regression (LUR) model was employed to predict the spatial concentration distribution of NO2 and PM10 in the Tianjin region based on the environmental air quality monitoring data. Four multiple linear regre...Land use regression (LUR) model was employed to predict the spatial concentration distribution of NO2 and PM10 in the Tianjin region based on the environmental air quality monitoring data. Four multiple linear regression (MLR) equations were established based on the most significant variables for NO2 in heating season (R2 = 0.74), and non-heating season (R2 = 0.61) in the whole study area; and PM10 in heating season (R2 = 0.72), and non-heating season (R2 = 0.49). Maps of spatial concentration distribution for NO2 and PM10 were obtained based on the MLR equations (resolution is 10 krn). Intercepts of MLR equations were 0.050 (NOz, heating season), 0.035 (NO2, non-heating season), 0.068 (PM10, heating season), and 0.092 (PM10, non-beating season) in the whole study area. In the central area of Tianjin region, the intercepts were 0.042 (NO2, heating season), 0.043 (NO2, non-heating season), 0.087 (PM10, heating season), and 0.096 (PMl0, non-heating season). These intercept values might imply an area's background concentrations. Predicted result derived from LUR model in the central area was better than that in the whole study area. Rz values increased 0.09 (heating season) and 0.18 (non-heating season) for NO2, and 0.08 (heating season) and 0.04 (non-heating season) for PMl0. In terms of R2, LUR model performed more effectively in heating season than non-heating season in the study area and gave a better result for NOz compared with PM10.展开更多
In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve sc...In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve scaffolds promotes the repair of injured peripheral nerves. Autologous Schwann cell transplantation in humans has been reported recently. This article reviews current methods for removing the extracellular matrix and analyzes its composition and function. The development and secretory products of Schwann cells are also reviewed. The methods for the repair of peripheral nerve injuries that use myelin and Schwann cell transplantation are assessed. This survey of the literature data shows that using a decellularized nerve conduit combined with Schwann cells represents an effective strategy for the treatment of peripheral nerve injury. This analysis provides a comprehensive basis on which to make clinical decisions for the repair of peripheral nerve injury.展开更多
A large number of chemokines,cytokines,other trophic factors and the extracellular matrix molecules form a favorable microenvironment for peripheral nerve regeneration.This microenvironment is one of the major factors...A large number of chemokines,cytokines,other trophic factors and the extracellular matrix molecules form a favorable microenvironment for peripheral nerve regeneration.This microenvironment is one of the major factors for regenerative success.Therefore,it is important to investigate the key molecules and regulators affecting nerve regeneration after peripheral nerve injury.However,the identities of specific cytokines at various time points after sciatic nerve injury have not been determined.The study was performed by transecting the sciatic nerve to establish a model of peripheral nerve injury and to analyze,by protein microarray,the expression of different cytokines in the distal nerve after injury.Results showed a large number of cytokines were up-regulated at different time points post injury and several cytokines,e.g.,ciliary neurotrophic factor,were downregulated.The construction of a protein-protein interaction network was used to screen how the proteins interacted with differentially expressed cytokines.Kyoto Encyclopedia of Genes and Genomes pathway and Gene ontology analyses indicated that the differentially expressed cytokines were significantly associated with chemokine signaling pathways,Janus kinase/signal transducers and activators of transcription,phosphoinositide 3-kinase/protein kinase B,and notch signaling pathway.The cytokines involved in inflammation,immune response and cell chemotaxis were up-regulated initially and the cytokines involved in neuronal apoptotic processes,cell-cell adhesion,and cell proliferation were up-regulated at 28 days after injury.Western blot analysis showed that the expression and changes of hepatocyte growth factor,glial cell line-derived neurotrophic factor and ciliary neurotrophic factor were consistent with the results of protein microarray analysis.The results provide a comprehensive understanding of changes in cytokine expression and changes in these cytokines and classical signaling pathways and biological functions during Wallerian degeneration,as well as a basis for potential treatments of peripheral nerve injury.The study was approved by the Institutional Animal Care and Use Committee of the Chinese PLA General Hospital,China(approval number:2016-x9-07)in September 2016.展开更多
基金supported by the National Natural Science Foundation of China(32370703)the CAMS Innovation Fund for Medical Sciences(CIFMS)(2022-I2M-1-021,2021-I2M-1-061)the Major Project of Guangzhou National Labora-tory(GZNL2024A01015).
文摘Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape.
基金supported by the National Key Research and Development Program of China(No.2024YFA1300128)the National Natural Science Foundation of China(No.82372663)+2 种基金the Key Research and Development Program of Yunnan Province(No.202302AA310024)the Key Research and Development Program of Jiangxi Province(No.20232BBG70024)the Natural Science Foundation of Shandong Province(No.ZR2023LSW008).
文摘An organoid is a three-dimensional(3D)cell culture model that can reproduce the distinct structure and inherent functionality of certain organs.Nevertheless,a major limitation of organoids is the absence of a complex vascular network,thus restricting the supply of oxygen and essential nutrients.Coupled with their inherent size constraints and metabolite accumulation,it is challenging for organoids to replicate the natural intricacies of organs,thereby limiting their applicability.To overcome the challenges associated with this technology,we developed a culture platform to cultivate tumors or organ-derived organoids up to the centimeter scale.Initially,a customized organoid-on-a-chip including a microvascular network at the micron scale was designed using 3D printing.Further,by integrating an infusion device,the chip ensures an adequate supply of nutrients and fluid immersion while mimicking blood flow dynamics.Our method overcomes the issue of the limited size of organoids due to insufficient nutrient access,making it possible to produce large-scale tumor and normal tissue models in vitro,while providing insights into drug efficacy and toxicology evaluation as well as standardized organoid production.
基金upported by the Major Project of Guangzhou National Laboratory(GZNL2024A01002)National Key Plan for Scientific Research and Development of China(2022YFC2303802)+1 种基金National Natural Science Foundation of China(32170651&32370700)Hunan Provincial Natural Science Foundation of China(2024JJ2015).
文摘Dear Editor,Influenza viruses cause significant mortality and morbidity in humans.Vaccination is currently the most effective way to combat the virus(Perofsky and Nelson,2020).Unfortunately,the influenza virus frequently changes its antigenicity through rapid mutations,leading to decreased vaccine efficacy or even failure.To improve vaccine effectiveness,it is necessary to monitor antigenic variation and update vaccine strains when significant antigenic variation occurs(Perofsky and Nelson,2020;Malik et al.,2024).
文摘During the final proofing stage of the paper,the wrong version of Fig.2 was accidently used when replacing it with a high-resolution version.The star and circle marks were missing in the published version.
基金Guangzhou (China) government postdoctoral program for providing financial support to conduct this worksupport from the National Natural Science Foundation of China (No. 72140008)funding from the European Union’s Horizon 2020 Research and Innovation program under grant agreement No. 101022484。
文摘Graphene has enormous potential to capture CO_(2)due to its unique properties and cost-effectiveness.However,graphene-based adsorbents have drawbacks of lower CO_(2)adsorption capacity and poor selectivity.This work demonstrates a one-step rapid and sustainable N_(2)/H_(2)plasma treatment process to prepare graphene-based sorbent material with enhanced CO_(2)adsorption performance.Plasma treatment directly enriches amine species,increases surface area,and improves textural properties.The CO_(2)adsorption capacity increases from 1.6 to 3.3 mmol/g for capturing flue gas,and from 0.14 to 1.3 mmol/g for direct air capture (DAC).Importantly,the electrothermal property of the plasma-modified aerogels has been significantly improved,resulting in faster heating rates and significantly reducing energy consumption compared to conventional external heating for regeneration of sorbents.Modified aerogels display improved selectivity of 42 and 87 after plasma modification for 5 and 10 min,respectively.The plasma-treated aerogels display minimal loss between 17%and 19% in capacity after 40 adsorption/desorption cycles,rendering excellent stability.The N_(2)/H_(2)plasma treatment of adsorbent materials would lower energy expenses and prevent negative effects on the global economy caused by climate change.
基金supported by the National Key Research and Development Program of China(No.2022YFA1602200)the National Natural Science Foundation of China(Nos.12341501 and 12405174)the Hefei Comprehensive National Science Center for the strong support on the STCF key technology research project.
文摘Electron-positron colliders operating in the GeV center-of-mass range,or tau-charm energy region,have been proved to enable competitive frontier research due to several unique features.With the progress of high-energy physics in the last two decades,a new-generation Tau-Charm factory,called the Super Tau-Charm Facility(STCF),has been actively promoted by the particle physics community in China.STCF has the potential to address fundamental questions such as the essence of color confinement and the matter-antimatter asymmetry within the next decades.The main design goals of the STCF are a center-of-mass energy ranging from 2 to 7 GeV and a luminosity surpassing 5×10^(34)cm^(−2)s^(−1)that is optimized at a center-of-mass energy of 4 GeV,which is approximately 50 times that of the currently operating Tau-Charm factory-BEPCII.The STCF accelerator has two main parts:a double-ring collider with a crab-waist collision scheme and an injector that provides top-up injections for both electron and positron beams.As a typical third-generation electron-positron circular collider,the STCF accelerator faces many challenges in both accelerator physics and technology.In this paper,the conceptual design of the STCF accelerator complex is presented,including the ongoing efforts and plans for technological research and develop-ment,as well as the required infrastructure.The STCF project aims to secure support from the Chinese central government for its construction during the 15th Five-Year Plan(2026-2030).
文摘厌氧消化1号模型(Anaerobic Digestion Model No.1,ADM1)量化表达了厌氧发酵过程中各类物质的转化过程,在研究和咨询领域获得了广泛的发展和应用,但ADM1并没有过多考虑物理化学过程,这些物化过程虽然并不直接经由微生物发生,但它们却可以影响生化过程。通过建立ADM1气液转换模型,并基于生物甲烷潜力(BMP)测试建立液相气体浓度变化映射函数,将多元隐性模型转化为k_(L)a的显性模型,基于对k_(L)a参数的实时测算,对序批式投料的CSTR反应器搅拌装置设置变频激励机制,提高气液转换效率,促进沼气的快速逸出。经撬装CSTR中试设备连续实验测试,该智能控制模型相比传统运行方式容积产气率提升15.5%,对提升规模化沼气工程的生产效率具有显著的指导和应用价值。基于边云协同的智能控制为规模化生物燃气项目的智慧管控提供了全新的技术范式。
基金supported by the National Natural Science Foundation of China,No.31771052(to YW)the National Key Research&Development Program of China,No.2017YFA0104701,2017YFA0104702 and 2016YFC1101601+2 种基金the National Basic Research Program of China(973 Program),No.2014CB542201(to JP)the Natural Science Foundation of Beijing,No.7172202(to YW)the PLA Youth Training Project for Medical Science,No.16QNP144(to YW)
文摘Resident and inflammatory macrophages are essential effectors of the innate immune system. These cells provide innate immune defenses and regulate tissue and organ homeostasis. In addition to their roles in diseases such as cancer, obesity and osteoarthritis, they play vital roles in tissue repair and disease rehabilitation. Macrophages and other inflammatory cells are recruited to tissue injury sites where they promote changes in the microenvironment. Among the inflammatory cell types, only macrophages have both pro-inflammatory (Ml) and anti-inflammatory (M2) actions, and M2 macrophages have four subtypes. The co-action of Ml and M2 subtypes can create a favorable microenvironment, releasing cytokines for damaged tissue repair. In this review, we discuss the activation of macrophages and their roles in severe peripheral nerve injury. We also describe the therapeutic potential of macrophages in nerve tissue engineering treatment and highlight approaches for enhancing M2 cell-mediated nerve repair and regeneration.
基金supported by the Special Environmental Research Funds for Public Welfare (No. 200709048,200909005)the National Natural Science Foundation of China (No. 20677030)
文摘Land use regression (LUR) model was employed to predict the spatial concentration distribution of NO2 and PM10 in the Tianjin region based on the environmental air quality monitoring data. Four multiple linear regression (MLR) equations were established based on the most significant variables for NO2 in heating season (R2 = 0.74), and non-heating season (R2 = 0.61) in the whole study area; and PM10 in heating season (R2 = 0.72), and non-heating season (R2 = 0.49). Maps of spatial concentration distribution for NO2 and PM10 were obtained based on the MLR equations (resolution is 10 krn). Intercepts of MLR equations were 0.050 (NOz, heating season), 0.035 (NO2, non-heating season), 0.068 (PM10, heating season), and 0.092 (PM10, non-beating season) in the whole study area. In the central area of Tianjin region, the intercepts were 0.042 (NO2, heating season), 0.043 (NO2, non-heating season), 0.087 (PM10, heating season), and 0.096 (PMl0, non-heating season). These intercept values might imply an area's background concentrations. Predicted result derived from LUR model in the central area was better than that in the whole study area. Rz values increased 0.09 (heating season) and 0.18 (non-heating season) for NO2, and 0.08 (heating season) and 0.04 (non-heating season) for PMl0. In terms of R2, LUR model performed more effectively in heating season than non-heating season in the study area and gave a better result for NOz compared with PM10.
基金supported by the National Key R&D Program of China,No.2017YFA0104701(to YW)the National Natural Science Foundation of China,No.31771052(to YW)+1 种基金the Natural Science Foundation of Beijing of China,No.7172202(to YW)the PLA Youth Training Project for Medical Science of China,No.16QNP144(to YW)
文摘In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve scaffolds promotes the repair of injured peripheral nerves. Autologous Schwann cell transplantation in humans has been reported recently. This article reviews current methods for removing the extracellular matrix and analyzes its composition and function. The development and secretory products of Schwann cells are also reviewed. The methods for the repair of peripheral nerve injuries that use myelin and Schwann cell transplantation are assessed. This survey of the literature data shows that using a decellularized nerve conduit combined with Schwann cells represents an effective strategy for the treatment of peripheral nerve injury. This analysis provides a comprehensive basis on which to make clinical decisions for the repair of peripheral nerve injury.
基金supported by the National Key Research&Development Program of China,No.2017YFA0104702(to AJS)the National Basic Research Program of China(973 Program),No.2014CB542201(to JP)
文摘A large number of chemokines,cytokines,other trophic factors and the extracellular matrix molecules form a favorable microenvironment for peripheral nerve regeneration.This microenvironment is one of the major factors for regenerative success.Therefore,it is important to investigate the key molecules and regulators affecting nerve regeneration after peripheral nerve injury.However,the identities of specific cytokines at various time points after sciatic nerve injury have not been determined.The study was performed by transecting the sciatic nerve to establish a model of peripheral nerve injury and to analyze,by protein microarray,the expression of different cytokines in the distal nerve after injury.Results showed a large number of cytokines were up-regulated at different time points post injury and several cytokines,e.g.,ciliary neurotrophic factor,were downregulated.The construction of a protein-protein interaction network was used to screen how the proteins interacted with differentially expressed cytokines.Kyoto Encyclopedia of Genes and Genomes pathway and Gene ontology analyses indicated that the differentially expressed cytokines were significantly associated with chemokine signaling pathways,Janus kinase/signal transducers and activators of transcription,phosphoinositide 3-kinase/protein kinase B,and notch signaling pathway.The cytokines involved in inflammation,immune response and cell chemotaxis were up-regulated initially and the cytokines involved in neuronal apoptotic processes,cell-cell adhesion,and cell proliferation were up-regulated at 28 days after injury.Western blot analysis showed that the expression and changes of hepatocyte growth factor,glial cell line-derived neurotrophic factor and ciliary neurotrophic factor were consistent with the results of protein microarray analysis.The results provide a comprehensive understanding of changes in cytokine expression and changes in these cytokines and classical signaling pathways and biological functions during Wallerian degeneration,as well as a basis for potential treatments of peripheral nerve injury.The study was approved by the Institutional Animal Care and Use Committee of the Chinese PLA General Hospital,China(approval number:2016-x9-07)in September 2016.