The design and manufacturing of microchannels are crucial aspects of modern micro/nanomanufacturing processes,offering a versatile platform for manipulating and driving micro/nanoparticles or cells.In this study,we pr...The design and manufacturing of microchannels are crucial aspects of modern micro/nanomanufacturing processes,offering a versatile platform for manipulating and driving micro/nanoparticles or cells.In this study,we propose a method for manufacturing microchannels using optically induced dielectrophoresis technology to induce the polymerization of polyethylene glycol diacrylate solution.To overcome limitations related to the light intensity energy and the size of intact microchannels,we design and manufacture microstructures of various shapes with a height of 4µm.Additionally,we simulate and analyze the movement of and forces acting on polystyrene(PS)microspheres at different spatial positions within the microchannels.Finally,we successfully demonstrate applications involving the transport of PS microspheres in custom-fabricated microchannels.This novel biocompatible microchannel manufacturing method is simple and non-biotoxic.It provides a new approach for simulating physiological environments in vitro and cultivating and manipulating cells.展开更多
In recent years, robots used for targeted drug delivery in the stomach have received extensive attention. Inspired by tumbleweeds, we have designed a dual-responsive soft robot based on poly(N‑isopropylacrylamide) and...In recent years, robots used for targeted drug delivery in the stomach have received extensive attention. Inspired by tumbleweeds, we have designed a dual-responsive soft robot based on poly(N‑isopropylacrylamide) and MoS_(2). Under the action of an adjustable magnetic field, it can achieve steady motion at a frequency that allows it to move up to 35 mm/s, demonstrating high flexibility and controllability. It can also roll along a predetermined path, traverse mazes, climb over obstacles, among other functions. In addition, by harnessing the photothermal conversion effect of MoS_(2), the robot can be opened and closed using light, enabling controlled drug release. Targeted drug delivery is achieved in a gastric model using our designed soft robot, marking a significant clinical advancement expected to revolutionize future medical treatments and enhance the efficacy of drug therapy.展开更多
Micro milling is a flexible and economical method to fabricate micro components with three-dimensional geometry features over a wide range of engineering materials. But the surface roughness and micro topography alway...Micro milling is a flexible and economical method to fabricate micro components with three-dimensional geometry features over a wide range of engineering materials. But the surface roughness and micro topography always limit the performance of the machined micro components. This paper presents a surface generation simulation in micro end milling considering both axial and radial tool runout. Firstly, a surface generation model is established based on the geometry of micro milling cutter. Secondly, the influence of the runout in axial and radial directions on the surface generation are investigated and the surface roughness prediction is realized. It is found that the axial runout has a significant influence on the surface topography generation. Furthermore, the influence of axial runout on the surface micro topography was studied quantitatively, and a critical axial runout is given for variable feed per tooth to generate specific surface topography. Finally, the proposed model is validated by means of experiments and a good correlation is obtained. The proposed surface generation model o ers a basis for designing and optimizing surface parameters of functional machined surfaces.展开更多
基金funded by the National Natural Science Foundation of China(Project No.62273289)The Youth Innovation Science and Technology Support Program of Shandong Province(Project No.2022KJ274)+1 种基金Natural Science Foundation of Shandong Province(Grant No.ZR2024MF007)Graduate Innovation Foundation of Yantai University,GIFYTU.
文摘The design and manufacturing of microchannels are crucial aspects of modern micro/nanomanufacturing processes,offering a versatile platform for manipulating and driving micro/nanoparticles or cells.In this study,we propose a method for manufacturing microchannels using optically induced dielectrophoresis technology to induce the polymerization of polyethylene glycol diacrylate solution.To overcome limitations related to the light intensity energy and the size of intact microchannels,we design and manufacture microstructures of various shapes with a height of 4µm.Additionally,we simulate and analyze the movement of and forces acting on polystyrene(PS)microspheres at different spatial positions within the microchannels.Finally,we successfully demonstrate applications involving the transport of PS microspheres in custom-fabricated microchannels.This novel biocompatible microchannel manufacturing method is simple and non-biotoxic.It provides a new approach for simulating physiological environments in vitro and cultivating and manipulating cells.
基金the financial support through National Natural Science Foundation of China(Project No.62273289)The Youth Innovation Science and Technology Support Program of Shandong Province(Project No.2022KJ274)+1 种基金Shandong Provincial Natural Science Foundation(ZR2024MF007)Graduate Innovation Foundation of Yantai University,GIFYTU.
文摘In recent years, robots used for targeted drug delivery in the stomach have received extensive attention. Inspired by tumbleweeds, we have designed a dual-responsive soft robot based on poly(N‑isopropylacrylamide) and MoS_(2). Under the action of an adjustable magnetic field, it can achieve steady motion at a frequency that allows it to move up to 35 mm/s, demonstrating high flexibility and controllability. It can also roll along a predetermined path, traverse mazes, climb over obstacles, among other functions. In addition, by harnessing the photothermal conversion effect of MoS_(2), the robot can be opened and closed using light, enabling controlled drug release. Targeted drug delivery is achieved in a gastric model using our designed soft robot, marking a significant clinical advancement expected to revolutionize future medical treatments and enhance the efficacy of drug therapy.
基金Supported by Engineering and Physical Sciences Research Council(Grant No.EP/M020657/1)National Natural Science Foundation of China(Grant No.51505107)Project of Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF.2017029)
文摘Micro milling is a flexible and economical method to fabricate micro components with three-dimensional geometry features over a wide range of engineering materials. But the surface roughness and micro topography always limit the performance of the machined micro components. This paper presents a surface generation simulation in micro end milling considering both axial and radial tool runout. Firstly, a surface generation model is established based on the geometry of micro milling cutter. Secondly, the influence of the runout in axial and radial directions on the surface generation are investigated and the surface roughness prediction is realized. It is found that the axial runout has a significant influence on the surface topography generation. Furthermore, the influence of axial runout on the surface micro topography was studied quantitatively, and a critical axial runout is given for variable feed per tooth to generate specific surface topography. Finally, the proposed model is validated by means of experiments and a good correlation is obtained. The proposed surface generation model o ers a basis for designing and optimizing surface parameters of functional machined surfaces.