Elements(As,Bi)and(Cu,Fe)exhibiting two typical segregation behavior in liquid Sb alloys were selected as solute atoms for analysis.Ab initio molecular dynamics(AIMD)simulations were employed to study the molten Sb al...Elements(As,Bi)and(Cu,Fe)exhibiting two typical segregation behavior in liquid Sb alloys were selected as solute atoms for analysis.Ab initio molecular dynamics(AIMD)simulations were employed to study the molten Sb alloy at different temperatures.By analyzing its pair correlation function(PCF),bond pairs,bond angle distribution function(BADF),and Voronoi polyhedron(VP),the short-range order(SRO)of the alloy was investigated.In the Sb melt,the solute atoms Cu and Fe,which have smaller distribution coefficients,exhibit a stronger affinity for Sb than the solute atoms As and Bi,which have larger distribution coefficients.The BADF of As and Bi with larger distribution coefficients shows a lower probability of small-angle peaks compared to large-angle peaks,whereas the BADF of Cu and Fe with smaller distribution coefficients exhibits the opposite trend.The BADF reveals that Sb-As and Sb-Bi approach pure Sb melt,while Sb-Cu and Sb-Fe deviate significantly.Compared to Sb-Cu and Sb-Fe,the Sb-As and Sb-Bi systems exhibit more low-index bonds,suggesting weaker interactions and more disorder.The VP fractions around As and Bi atoms are lower than those around Cu and Fe,and the VP face distributions around As and Bi are more complex.There are differences in the VP around different solute atoms,primarily due to the varying bond pair fractions associated with each solute atom.Fe has the smallest diffusion coefficient,primarily due to its compact local structure.展开更多
Three types of Al/Al−27%Si laminated composites,each containing 22%Si,were fabricated via hot pressing and hot rolling.The microstructures,mechanical properties and thermo-physical properties of these composites were ...Three types of Al/Al−27%Si laminated composites,each containing 22%Si,were fabricated via hot pressing and hot rolling.The microstructures,mechanical properties and thermo-physical properties of these composites were investigated.The results demonstrated that the three laminated composites exhibited similar microstructural features,characterized by well-bonded interfaces between the Al layer and the Al−27%Si alloy layer.The tensile and flexural strengths of the composites were significantly higher than those of both Al−22%Si and Al−27%Si alloys.These strengths increased gradually with decreasing the layer thickness,reaching peak values of 222.5 and 407.4 MPa,respectively.Crack deflection was observed in the cross-sections of the bending fracture surfaces,which contributed to the enhanced strength and toughness.In terms of thermo-physical properties,the thermal conductivity of the composites was lower than that of Al−22%Si and Al−27%Si alloys.The minimum reductions in thermal conductivity were 6.8%and 0.9%for the T3 laminated composite,respectively.Additionally,the coefficient of thermal expansion of the composites was improved,exhibiting varying temperature-dependent behaviors.展开更多
Depression is a multifaceted disorder with a largely unresolved etiology influenced by a complex interplay of pathogenic factors.Despite decades of research,it remains a major condition that significantly diminishes p...Depression is a multifaceted disorder with a largely unresolved etiology influenced by a complex interplay of pathogenic factors.Despite decades of research,it remains a major condition that significantly diminishes patients’quality of life.Advances in optogenetics have introduced a powerful tool for exploring the neural mechanisms underlying depression.By selectively expressing optogenes in specific cell types in mice,researchers can study the roles of these cells through targeted light stimulation,offering new insights into central nervous system disorders.The use of viral vectors to express opsins in distinct neuronal subtypes enables precise activation or inhibition of these neurons via light.When combined with behavioral,morphological,and electrophysiological analyses,optogenetics provides an invaluable approach to investigating the neural mechanisms of psychiatric conditions.This review synthesizes current research on the application of optogenetics to understand the mechanisms of depression.This study aims to enhance our knowledge of optogenetic strategies for regulating depression and advancing antidepressant research.展开更多
To address the issues of single warning indicators,fixed thresholds,and insufficient adaptability in coal and gas outburst early warning models,this study proposes a dynamic early warning model for gas outbursts based...To address the issues of single warning indicators,fixed thresholds,and insufficient adaptability in coal and gas outburst early warning models,this study proposes a dynamic early warning model for gas outbursts based on adaptive fractal dimension characterization.By analyzing the nonlinear characteristics of gas concentration data,an adaptive window fractal analysis method is introduced.Combined with boxcounting dimension and variation of box dimension metrics,a cross-scale dynamic warning model for disaster prevention is established.The implementation involves three key phases:First,wavelet denoising and interpolation methods are employed for raw data preprocessing,followed by validation of fractal characteristics.Second,an adaptive window cross-scale fractal dimension method is proposed to calculate the box-counting dimension of gas concentration,enabling effective capture of multi-scale complex features.Finally,dynamic threshold partitioning is achieved through membership functions and the 3σprinciple,establishing a graded classification standard for the mine gas disaster(MGD)index.Validated through engineering applications at Shoushan#1 Coal Mine in Henan Province,the results demonstrate that the adaptive window fractal dimension curve exhibits significantly enhanced fluctuation characteristics compared to fixed window methods,with local feature detection capability improved and warning accuracy reaching 86.9%.The research reveals that this model effectively resolves the limitations of traditional methods in capturing local features and dependency on subjective thresholds through multiindicator fusion and threshold optimization,providing both theoretical foundation and practical tool for coal mine gas outburst early warning.展开更多
High-purity antimony(Sb)is essential for industries like semiconductors and photovoltaics,driving research on its production.This review summarizes research advances in production and preparation techniques for high-p...High-purity antimony(Sb)is essential for industries like semiconductors and photovoltaics,driving research on its production.This review summarizes research advances in production and preparation techniques for high-purity Sb.Three process flowcharts to produce high-purity Sb are described according to different raw materials.Various process parameters of vacuum distillation,zone refining purification techniques and research progress in the field of high-purity Sb are discussed.Numerical simulation,atomic scale simulation,and research progress of alloying elements in the field of high-purity Sb are highlighted.It is shown that for the difficult removal of As element in Sb,the addition of Al makes the regional refining process more effective in reducing the arsenic content.Finally,the purification of high-purity Sb is summarized,providing insights into achieving efficient and environmentally friendly high-purity Sb production and outlining future directions.展开更多
文摘Elements(As,Bi)and(Cu,Fe)exhibiting two typical segregation behavior in liquid Sb alloys were selected as solute atoms for analysis.Ab initio molecular dynamics(AIMD)simulations were employed to study the molten Sb alloy at different temperatures.By analyzing its pair correlation function(PCF),bond pairs,bond angle distribution function(BADF),and Voronoi polyhedron(VP),the short-range order(SRO)of the alloy was investigated.In the Sb melt,the solute atoms Cu and Fe,which have smaller distribution coefficients,exhibit a stronger affinity for Sb than the solute atoms As and Bi,which have larger distribution coefficients.The BADF of As and Bi with larger distribution coefficients shows a lower probability of small-angle peaks compared to large-angle peaks,whereas the BADF of Cu and Fe with smaller distribution coefficients exhibits the opposite trend.The BADF reveals that Sb-As and Sb-Bi approach pure Sb melt,while Sb-Cu and Sb-Fe deviate significantly.Compared to Sb-Cu and Sb-Fe,the Sb-As and Sb-Bi systems exhibit more low-index bonds,suggesting weaker interactions and more disorder.The VP fractions around As and Bi atoms are lower than those around Cu and Fe,and the VP face distributions around As and Bi are more complex.There are differences in the VP around different solute atoms,primarily due to the varying bond pair fractions associated with each solute atom.Fe has the smallest diffusion coefficient,primarily due to its compact local structure.
基金supported by the National Natural Science Foundation of China(No.52274369)the National Key Laboratory of Science and Technology on High-strength Structural Materials,China(No.623020034).
文摘Three types of Al/Al−27%Si laminated composites,each containing 22%Si,were fabricated via hot pressing and hot rolling.The microstructures,mechanical properties and thermo-physical properties of these composites were investigated.The results demonstrated that the three laminated composites exhibited similar microstructural features,characterized by well-bonded interfaces between the Al layer and the Al−27%Si alloy layer.The tensile and flexural strengths of the composites were significantly higher than those of both Al−22%Si and Al−27%Si alloys.These strengths increased gradually with decreasing the layer thickness,reaching peak values of 222.5 and 407.4 MPa,respectively.Crack deflection was observed in the cross-sections of the bending fracture surfaces,which contributed to the enhanced strength and toughness.In terms of thermo-physical properties,the thermal conductivity of the composites was lower than that of Al−22%Si and Al−27%Si alloys.The minimum reductions in thermal conductivity were 6.8%and 0.9%for the T3 laminated composite,respectively.Additionally,the coefficient of thermal expansion of the composites was improved,exhibiting varying temperature-dependent behaviors.
基金funded by the Natural Science Foundation of China(No.82305049).
文摘Depression is a multifaceted disorder with a largely unresolved etiology influenced by a complex interplay of pathogenic factors.Despite decades of research,it remains a major condition that significantly diminishes patients’quality of life.Advances in optogenetics have introduced a powerful tool for exploring the neural mechanisms underlying depression.By selectively expressing optogenes in specific cell types in mice,researchers can study the roles of these cells through targeted light stimulation,offering new insights into central nervous system disorders.The use of viral vectors to express opsins in distinct neuronal subtypes enables precise activation or inhibition of these neurons via light.When combined with behavioral,morphological,and electrophysiological analyses,optogenetics provides an invaluable approach to investigating the neural mechanisms of psychiatric conditions.This review synthesizes current research on the application of optogenetics to understand the mechanisms of depression.This study aims to enhance our knowledge of optogenetic strategies for regulating depression and advancing antidepressant research.
基金funded by the National Key Research and Development ProgramFund for Young Scientists(No.2021YFC2900400)+5 种基金the National Natural Science Foundation of China(No.52304123)Fundamental Research Funds for the Central Universities(No.2024CDJXY025)Sichuan-Chongqing Science and Technology Innovation Cooperation Program Project(No.CSTB2024TIAD-CYKJCXX0016)Postdoctoral Research Foundation of China(No.2023M730412)Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(No.GZB20230914)Chongqing Outstanding Youth Science Foundation Program(No.CSTB2023NSCQ-JQX0027)。
文摘To address the issues of single warning indicators,fixed thresholds,and insufficient adaptability in coal and gas outburst early warning models,this study proposes a dynamic early warning model for gas outbursts based on adaptive fractal dimension characterization.By analyzing the nonlinear characteristics of gas concentration data,an adaptive window fractal analysis method is introduced.Combined with boxcounting dimension and variation of box dimension metrics,a cross-scale dynamic warning model for disaster prevention is established.The implementation involves three key phases:First,wavelet denoising and interpolation methods are employed for raw data preprocessing,followed by validation of fractal characteristics.Second,an adaptive window cross-scale fractal dimension method is proposed to calculate the box-counting dimension of gas concentration,enabling effective capture of multi-scale complex features.Finally,dynamic threshold partitioning is achieved through membership functions and the 3σprinciple,establishing a graded classification standard for the mine gas disaster(MGD)index.Validated through engineering applications at Shoushan#1 Coal Mine in Henan Province,the results demonstrate that the adaptive window fractal dimension curve exhibits significantly enhanced fluctuation characteristics compared to fixed window methods,with local feature detection capability improved and warning accuracy reaching 86.9%.The research reveals that this model effectively resolves the limitations of traditional methods in capturing local features and dependency on subjective thresholds through multiindicator fusion and threshold optimization,providing both theoretical foundation and practical tool for coal mine gas outburst early warning.
文摘High-purity antimony(Sb)is essential for industries like semiconductors and photovoltaics,driving research on its production.This review summarizes research advances in production and preparation techniques for high-purity Sb.Three process flowcharts to produce high-purity Sb are described according to different raw materials.Various process parameters of vacuum distillation,zone refining purification techniques and research progress in the field of high-purity Sb are discussed.Numerical simulation,atomic scale simulation,and research progress of alloying elements in the field of high-purity Sb are highlighted.It is shown that for the difficult removal of As element in Sb,the addition of Al makes the regional refining process more effective in reducing the arsenic content.Finally,the purification of high-purity Sb is summarized,providing insights into achieving efficient and environmentally friendly high-purity Sb production and outlining future directions.