Phosphorus-based anode is a promising anode for sodium-ion batteries(SIBs)due to its high specific capacity,however,suffers from poor electronic conductivity and unfavorable electrochemical reversibility.Incorporating...Phosphorus-based anode is a promising anode for sodium-ion batteries(SIBs)due to its high specific capacity,however,suffers from poor electronic conductivity and unfavorable electrochemical reversibility.Incorporating metals such as copper(Cu)into phosphorus has been demonstrated to not only improve the electronic conductivity but also accommodate the volume change during cycling,yet the underline sodiation mechanism is not clear.Herein,take a copper phosphide and reduced graphene oxide(CuP_(2)/C)composite as an example,which delivers a high reversible capacity of>900 mAh/g.Interestingly,it is revealed that the native oxidation PO_(x)components of the CuP_(2)/C composite show higher electrochemical reversibility than the bulk Cu P_(2),based on a quantitative analysis of high-resolution solid-state^(31)P NMR,ex-situ XPS and synchrotron X-ray diffraction characterization techniques.The sodiation products Na_(3)PO_(4) and Na_(4)P_(2)O_(7) derived from PO_(x) could react with Na-P alloys and regenerate to PO_(x) during charge process,which probably accounts for the high reversible capacity of the Cu P_(2)/C anode.The findings also illustrate that the phosphorus transforms into nanocrystalline Na_(3)P and Na_(x)P alloys,which laterally shows crystallization-amorphization evolution process during cycling.展开更多
Silicon has ultrahigh capacity,dendrite-free alloy lithiation mechanism and low cost and has been regarded as a promising anode candidate for solid-state battery.Owing to the low infiltration of solid-state electrolyt...Silicon has ultrahigh capacity,dendrite-free alloy lithiation mechanism and low cost and has been regarded as a promising anode candidate for solid-state battery.Owing to the low infiltration of solid-state electrolyte(SSE),not the unstable solid-electrolyte interphase(SEI),but the huge stress during lithiation-and delithiation-induced particle fracture and conductivity lost tend to be the main issues.In this study,starting with micron-Si,a novel monothetic carbon conductive framework and a MgO coating layer are designed,which serve as electron pathway across the whole electrode and stress releasing layer,respectively.In addition,the in situ reaction between Si and SSE helps to form a LiF-rich and mechanically stable SEI layer.As a result,the mechanical stability and charge transfer kinetics of the uniquely designed Si anode are significantly improved.Consequently,high initial Coulombic efficiency,high capacity and durable cycling stability can be achieved by applying the Si@MgO@C anode in SSB.For example,high specific capacity of 3224.6 mAh·g^(-1)and long cycling durability of 200 cycles are achieved.This work provides a new concept for designing alloy-type anode that combines surface coating on particle and electrode structure design.展开更多
Solid-state batteries(SSBs)with thermal stable solid-state electrolytes(SSEs)show intrinsic capacity and great potential in energy density improvement.SSEs play critical role,however,their low ionic conductivity at ro...Solid-state batteries(SSBs)with thermal stable solid-state electrolytes(SSEs)show intrinsic capacity and great potential in energy density improvement.SSEs play critical role,however,their low ionic conductivity at room temperature and high brittleness hinder their further development.In this paper,polypropylene(PP)-polyvinylidene fluoride(PVDF)-Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP)-Lithium bis(trifluoromethane sulphonyl)imide(LiTFSI)multi-layered composite solid electrolyte(CSE)is prepared by a simple separator coating strategy.The incorporation of LATP nanoparticle fillers and high concentration LiTFSI not only reduces the crystallinity of PVDF,but also forms a solvation structure,which contributes to high ionic conductivity in a wide temperature.In addition,using a PP separator as the supporting film,the mechanical strength of the electrolyte was improved and the growth of lithium dendrites are effectively inhibited.The results show that the CSE prepared in this paper has a high ionic conductivity of 6.38×10^(-4)S/cm at room temperature and significantly improves the mechanical properties,the tensile strength reaches 11.02 MPa.The cycle time of Li/Li symmetric cell assembled by CSE at room temperature can exceed 800 h.The Li/LFP full cell can cycle over 800 cycles and the specific capacity of Li/LFP full cell can still reach 120 m Ah/g after 800 cycles at 2 C.This CSE has good cycle stability and excellent mechanical strength at room temperature,which provides an effective method to improve the performance of solid electrolytes under moderate condition.展开更多
Solid-state batteries(SSBs)with high-capacity Si anodes have been regarded as one of the most promising candidates to meet the large scale energy storage and electrical vehicles due to its intrinsic safety and potenti...Solid-state batteries(SSBs)with high-capacity Si anodes have been regarded as one of the most promising candidates to meet the large scale energy storage and electrical vehicles due to its intrinsic safety and potential high energy density.However,Si suffers from poor electrical conductivity and huge volume change and particles fracture during lithiaiotn and delithiation,which induces low practical energy density.In addition,the SSBs are often operated at high temperature due to the poor physical contact and huge resistance between Si and solid-state electrolyte(SSE).To improve the bulk electronic/ionic conductivity of Si and its interfacial compatibility with SSE,herein,a binder free and self-supporting Si/C film was developed.The monolithic carbon not only enhance the electric conductivity but also release huge stress during lithiation and delithiation.In addition,paired with the flexible and soft poly(vinylidene fluoride)-co-hexafluoropropylene(PVDF-HFP)and Li_(1.3)A_(l0.3)Ti_(1.7)(PO_(4))_(3)(LATP)solid-state electrolyte,a LiF-rich and electrochemical stable solid-electrolyte interphase(SEI)layer is in-situ engineered.The fast bulk and interfacial ionic transportation as well as the mechanical integrity of MSi enable high performance SSBs at room temperature.As a result,high specific capacity of 2137 m Ah/g with an initial Coulombic efficiency of 83.2%is obtained at a rate of 0.5 A/g.Even at a high rate of 3 A/g,the specific capacity is1793 m Ah/g.At a rate of 1 A/g,the Si/C anode delivers a long cycling performance over 500 cycles while maintains a capacity of 1135 mAh/g.This work provides a new strategy that combines charge transfer kinetics and interfacial chemistry design toward high energy density Si-based SSBs.展开更多
Aqueous zinc-ion batteries encounter enormous challenges such as Zn dendrites and parasitic reactions.Separator modification is a highly effective strategy to address these issues.With the advantages of low cost,nonto...Aqueous zinc-ion batteries encounter enormous challenges such as Zn dendrites and parasitic reactions.Separator modification is a highly effective strategy to address these issues.With the advantages of low cost,nontoxicity,biodegradability,good film-forming ability,superior hydro phi licity,and rich functional groups,chitosan is an ideal matrix for constructing separators.However,the presence of positive charges within chitosan in weakly acidic electrolytes is unfavorable for dendrite inhibition.Herein,Schiff base reaction is introduced to modify chitosan matrix,transforming its charge polarity from positive to negative.Additionally,NbN with excellent zincophilicity is coated onto chitosan matrix,forming a Janus separator with low thickness of 19μm and considerably improved mechanical properties.The resultant separator can promote the transport of Zn^(2+)ions while triggering a repulsive shielding effect against anions,therefore dramatically enhancing Zn^(2+)ion transfer number from 0.28 to 0.49.This separator can also facilitate desolvation process,improve exchange current density,restrict two-dimensional Zn^(2+)ion diffusion,and enhance electrochemical kinetics,contributing to significantly inhibited dendrite growth,by-product formation,and hydrogen evolution.Consequently,stable and reversible Zn stripping/plating process is enabled for over 2500 h at 2 mA cm^(-2)and 2 mAh cm^(-2).And great rate capability and excellent cyclability can be achieved for full batteries even under harsh conditions.This work provides new insights into separator design for Zn-based batteries.展开更多
Single crystalline nickel rich Li[Ni_(x)Co_(y)Mn_(1-x–y)]O_(2)(SCNCM)layered oxide cathodes show higher ionic conductivity and better structure integrity than polycrystalline NCM(PCNCM)cathodes by eliminating grain b...Single crystalline nickel rich Li[Ni_(x)Co_(y)Mn_(1-x–y)]O_(2)(SCNCM)layered oxide cathodes show higher ionic conductivity and better structure integrity than polycrystalline NCM(PCNCM)cathodes by eliminating grain boundaries.However,it remains challenges in the controlled synthesis process and restricted cycling stability of SCNCM.Herein,take single crystalline nickel rich Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2)(SC811)as an example,a dual molten salts(LiOH and Li_(2)SO_(4))assisted secondary calcination method is proposed,for which LiOH salt improves primary crystal size and Li_(2)SO_(4)prevents the aggravation of NCM nanocrystals.To further reduce the interfacial side reactions,Mg-doping and B-coating surface modification was carried out,which effectively suppress anisotropic lattice changes and Li/Ni disorder.In addition,a thin and uniform H_(3)BO_(3)coating effectively prevents direct contact between the electrode and electrolyte,thus reducing harmful parasitic reactions.The single crystal structure engineering and surface modification strategy of oxide layered cathodes significantly improve the cycling stability of the modified SC811 cathode.For example,during a long-term cycling of 470 cycles,a high-capacity retention of 74.2%obtained at 1C rate.Our work provides a new strategy for engineering high energy nickel rich layered oxide NCM cathodes.展开更多
TMP269 is a selective class ⅡA histone deacetylase inhibitor that has a protective effect on the central nervous system, whose specific mechanism of action is unclear. We aimed to reveal the optimal concentration of ...TMP269 is a selective class ⅡA histone deacetylase inhibitor that has a protective effect on the central nervous system, whose specific mechanism of action is unclear. We aimed to reveal the optimal concentration of TMP269 for protecting against cerebral ischemia/reperfusion injury and its neuroprotective mechanism. Male Sprague-Dawley rats were randomly divided into sham, ischemia/reperfusion, and 1, 4, 10 and 16 mg/kg TMP269 groups. Cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion. TMP269 was intraperitoneally administered at different doses 0.5 hours before ischemia induction. Western blot assay and immunohistochemistry were used to detect effects of TMP269 on histone 2 acetylation. The results showed that the level of histone 2 acetylation was increased 24 hours after TMP269 injection. 2,3,5-Triphenyltetrazolium chloride staining was utilized to examine effect of TMP269 on infarct volume. The results found that different doses of TMP269 could reduce the infarct volume. Western blot assay, immunohistochemistry and Evans blue staining were employed to measure the effect of TMP269 on blood-brain barrier. The results showed that TMP269 counteracted the abnormal endothelial cell permeability changes caused by cerebral ischemia/reperfusion. Western blot assay and immunohistochemistry were used to determine the effect of TMP269 on tissue kallikrein. The results found that TMP269 up-regulated the expression of tissue kallikrein. Western blot assay further determined the optimal concentration to be 4 mg/kg. In conclusion, TMP269 plays a neuroprotective role by up-regulating the level of histone 2 acetylation, alleviating endothelial cell injury after cerebral ischemia/reperfusion, and up-regulating the expression of tissue kallikrein. The experimental protocol was approved in 2014 by the Department of Laboratory Animal Science, Fudan University, China(approval No. 20140143 C001).展开更多
Microwave reflectometry is a powerful diagnostic that can measure the density profile and localized turbulence with high spatial and temporal resolution and will be used in ITER,so understanding the influence of plasm...Microwave reflectometry is a powerful diagnostic that can measure the density profile and localized turbulence with high spatial and temporal resolution and will be used in ITER,so understanding the influence of plasma perturbations on the reflect signal is important.The characteristics of the reflect signal from profile reflectometry,the time-of-flight(TOF)signal associated with the MHD instabilities,are investigated in EAST.Using a 1D full-wave simulation code by the Finite-DifferenceTime-Domain(FDTD)method,it is well validated that the local density flattening could induce the discontinuity of the simulated TOF signal and an obvious change of reflect amplitude.Experimental TOF signals under different types of MHD instabilities(sawtooth,sawtooth precursors and tearing mode)are studied in detail and show agreement with the simulation.Two new improved algorithms for detecting and localizing the radial positions of the low-order rational surface,the cross-correlation and gradient threshold(CGT)method and the 2D convolutional neural network approach(CNN)are presented for the first time.It is concluded that TOF signal analysis from profile reflectometry can provide a straightforward and localized measurement of the plasma perturbation from the edge to the core simultaneously and may be a complement or correction to the q-profile control,which will be beneficial for the advanced tokamak operation.展开更多
基金financially supported by National Nature Science Foundation of China(Nos.21805278,22272175 and 22209075)the Fujian Science and Technology Planning Projects of China(Nos.2022T3067 and 2023H0045)+1 种基金the Self-deployment Project Research Programs of Haixi Institutes,Chinese Academy of Sciences(No.CXZX-2022-JQ12)the Self-deployment project of XIREM(No.2023GG02)。
文摘Phosphorus-based anode is a promising anode for sodium-ion batteries(SIBs)due to its high specific capacity,however,suffers from poor electronic conductivity and unfavorable electrochemical reversibility.Incorporating metals such as copper(Cu)into phosphorus has been demonstrated to not only improve the electronic conductivity but also accommodate the volume change during cycling,yet the underline sodiation mechanism is not clear.Herein,take a copper phosphide and reduced graphene oxide(CuP_(2)/C)composite as an example,which delivers a high reversible capacity of>900 mAh/g.Interestingly,it is revealed that the native oxidation PO_(x)components of the CuP_(2)/C composite show higher electrochemical reversibility than the bulk Cu P_(2),based on a quantitative analysis of high-resolution solid-state^(31)P NMR,ex-situ XPS and synchrotron X-ray diffraction characterization techniques.The sodiation products Na_(3)PO_(4) and Na_(4)P_(2)O_(7) derived from PO_(x) could react with Na-P alloys and regenerate to PO_(x) during charge process,which probably accounts for the high reversible capacity of the Cu P_(2)/C anode.The findings also illustrate that the phosphorus transforms into nanocrystalline Na_(3)P and Na_(x)P alloys,which laterally shows crystallization-amorphization evolution process during cycling.
基金financially supported by the National Natural Science Foundation of China(No.22209075)the Natural Science Foundation of Jiangsu Province(BK20200800)。
文摘Silicon has ultrahigh capacity,dendrite-free alloy lithiation mechanism and low cost and has been regarded as a promising anode candidate for solid-state battery.Owing to the low infiltration of solid-state electrolyte(SSE),not the unstable solid-electrolyte interphase(SEI),but the huge stress during lithiation-and delithiation-induced particle fracture and conductivity lost tend to be the main issues.In this study,starting with micron-Si,a novel monothetic carbon conductive framework and a MgO coating layer are designed,which serve as electron pathway across the whole electrode and stress releasing layer,respectively.In addition,the in situ reaction between Si and SSE helps to form a LiF-rich and mechanically stable SEI layer.As a result,the mechanical stability and charge transfer kinetics of the uniquely designed Si anode are significantly improved.Consequently,high initial Coulombic efficiency,high capacity and durable cycling stability can be achieved by applying the Si@MgO@C anode in SSB.For example,high specific capacity of 3224.6 mAh·g^(-1)and long cycling durability of 200 cycles are achieved.This work provides a new concept for designing alloy-type anode that combines surface coating on particle and electrode structure design.
基金supported by National Natural Science Foundation of China(No.22209075)。
文摘Solid-state batteries(SSBs)with thermal stable solid-state electrolytes(SSEs)show intrinsic capacity and great potential in energy density improvement.SSEs play critical role,however,their low ionic conductivity at room temperature and high brittleness hinder their further development.In this paper,polypropylene(PP)-polyvinylidene fluoride(PVDF)-Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP)-Lithium bis(trifluoromethane sulphonyl)imide(LiTFSI)multi-layered composite solid electrolyte(CSE)is prepared by a simple separator coating strategy.The incorporation of LATP nanoparticle fillers and high concentration LiTFSI not only reduces the crystallinity of PVDF,but also forms a solvation structure,which contributes to high ionic conductivity in a wide temperature.In addition,using a PP separator as the supporting film,the mechanical strength of the electrolyte was improved and the growth of lithium dendrites are effectively inhibited.The results show that the CSE prepared in this paper has a high ionic conductivity of 6.38×10^(-4)S/cm at room temperature and significantly improves the mechanical properties,the tensile strength reaches 11.02 MPa.The cycle time of Li/Li symmetric cell assembled by CSE at room temperature can exceed 800 h.The Li/LFP full cell can cycle over 800 cycles and the specific capacity of Li/LFP full cell can still reach 120 m Ah/g after 800 cycles at 2 C.This CSE has good cycle stability and excellent mechanical strength at room temperature,which provides an effective method to improve the performance of solid electrolytes under moderate condition.
基金financially supported by the Natural Science Foundation of Fujian Province(No.2021J01333)the funding from the Fujian Education Department of China(No.JAT210582)。
文摘Solid-state batteries(SSBs)with high-capacity Si anodes have been regarded as one of the most promising candidates to meet the large scale energy storage and electrical vehicles due to its intrinsic safety and potential high energy density.However,Si suffers from poor electrical conductivity and huge volume change and particles fracture during lithiaiotn and delithiation,which induces low practical energy density.In addition,the SSBs are often operated at high temperature due to the poor physical contact and huge resistance between Si and solid-state electrolyte(SSE).To improve the bulk electronic/ionic conductivity of Si and its interfacial compatibility with SSE,herein,a binder free and self-supporting Si/C film was developed.The monolithic carbon not only enhance the electric conductivity but also release huge stress during lithiation and delithiation.In addition,paired with the flexible and soft poly(vinylidene fluoride)-co-hexafluoropropylene(PVDF-HFP)and Li_(1.3)A_(l0.3)Ti_(1.7)(PO_(4))_(3)(LATP)solid-state electrolyte,a LiF-rich and electrochemical stable solid-electrolyte interphase(SEI)layer is in-situ engineered.The fast bulk and interfacial ionic transportation as well as the mechanical integrity of MSi enable high performance SSBs at room temperature.As a result,high specific capacity of 2137 m Ah/g with an initial Coulombic efficiency of 83.2%is obtained at a rate of 0.5 A/g.Even at a high rate of 3 A/g,the specific capacity is1793 m Ah/g.At a rate of 1 A/g,the Si/C anode delivers a long cycling performance over 500 cycles while maintains a capacity of 1135 mAh/g.This work provides a new strategy that combines charge transfer kinetics and interfacial chemistry design toward high energy density Si-based SSBs.
基金the financial support from the Natural Science Foundation of Jiangsu Province(BK20231292)the Jiangsu Agricultural Science and Technology Innovation Fund(CX(24)3091)+2 种基金the National Natural Science Foundation of China(12464032)the Natural Science Foundation of Jiangxi Province(20232BAB201032)supported by the high performance computing university-level public platform of Jinggangshan University.
文摘Aqueous zinc-ion batteries encounter enormous challenges such as Zn dendrites and parasitic reactions.Separator modification is a highly effective strategy to address these issues.With the advantages of low cost,nontoxicity,biodegradability,good film-forming ability,superior hydro phi licity,and rich functional groups,chitosan is an ideal matrix for constructing separators.However,the presence of positive charges within chitosan in weakly acidic electrolytes is unfavorable for dendrite inhibition.Herein,Schiff base reaction is introduced to modify chitosan matrix,transforming its charge polarity from positive to negative.Additionally,NbN with excellent zincophilicity is coated onto chitosan matrix,forming a Janus separator with low thickness of 19μm and considerably improved mechanical properties.The resultant separator can promote the transport of Zn^(2+)ions while triggering a repulsive shielding effect against anions,therefore dramatically enhancing Zn^(2+)ion transfer number from 0.28 to 0.49.This separator can also facilitate desolvation process,improve exchange current density,restrict two-dimensional Zn^(2+)ion diffusion,and enhance electrochemical kinetics,contributing to significantly inhibited dendrite growth,by-product formation,and hydrogen evolution.Consequently,stable and reversible Zn stripping/plating process is enabled for over 2500 h at 2 mA cm^(-2)and 2 mAh cm^(-2).And great rate capability and excellent cyclability can be achieved for full batteries even under harsh conditions.This work provides new insights into separator design for Zn-based batteries.
基金financially supported by the National Natural Science Foundation of China under the Grant No.22209075。
文摘Single crystalline nickel rich Li[Ni_(x)Co_(y)Mn_(1-x–y)]O_(2)(SCNCM)layered oxide cathodes show higher ionic conductivity and better structure integrity than polycrystalline NCM(PCNCM)cathodes by eliminating grain boundaries.However,it remains challenges in the controlled synthesis process and restricted cycling stability of SCNCM.Herein,take single crystalline nickel rich Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2)(SC811)as an example,a dual molten salts(LiOH and Li_(2)SO_(4))assisted secondary calcination method is proposed,for which LiOH salt improves primary crystal size and Li_(2)SO_(4)prevents the aggravation of NCM nanocrystals.To further reduce the interfacial side reactions,Mg-doping and B-coating surface modification was carried out,which effectively suppress anisotropic lattice changes and Li/Ni disorder.In addition,a thin and uniform H_(3)BO_(3)coating effectively prevents direct contact between the electrode and electrolyte,thus reducing harmful parasitic reactions.The single crystal structure engineering and surface modification strategy of oxide layered cathodes significantly improve the cycling stability of the modified SC811 cathode.For example,during a long-term cycling of 470 cycles,a high-capacity retention of 74.2%obtained at 1C rate.Our work provides a new strategy for engineering high energy nickel rich layered oxide NCM cathodes.
基金supported by the National Natural Science Foundation of China,No.81501134(to ZW)
文摘TMP269 is a selective class ⅡA histone deacetylase inhibitor that has a protective effect on the central nervous system, whose specific mechanism of action is unclear. We aimed to reveal the optimal concentration of TMP269 for protecting against cerebral ischemia/reperfusion injury and its neuroprotective mechanism. Male Sprague-Dawley rats were randomly divided into sham, ischemia/reperfusion, and 1, 4, 10 and 16 mg/kg TMP269 groups. Cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion. TMP269 was intraperitoneally administered at different doses 0.5 hours before ischemia induction. Western blot assay and immunohistochemistry were used to detect effects of TMP269 on histone 2 acetylation. The results showed that the level of histone 2 acetylation was increased 24 hours after TMP269 injection. 2,3,5-Triphenyltetrazolium chloride staining was utilized to examine effect of TMP269 on infarct volume. The results found that different doses of TMP269 could reduce the infarct volume. Western blot assay, immunohistochemistry and Evans blue staining were employed to measure the effect of TMP269 on blood-brain barrier. The results showed that TMP269 counteracted the abnormal endothelial cell permeability changes caused by cerebral ischemia/reperfusion. Western blot assay and immunohistochemistry were used to determine the effect of TMP269 on tissue kallikrein. The results found that TMP269 up-regulated the expression of tissue kallikrein. Western blot assay further determined the optimal concentration to be 4 mg/kg. In conclusion, TMP269 plays a neuroprotective role by up-regulating the level of histone 2 acetylation, alleviating endothelial cell injury after cerebral ischemia/reperfusion, and up-regulating the expression of tissue kallikrein. The experimental protocol was approved in 2014 by the Department of Laboratory Animal Science, Fudan University, China(approval No. 20140143 C001).
基金supported by the Open Fund of Magnetic Confinement Laboratory of Anhui Province(No.2023 AMF03005)the China Postdoctoral Science Foundation(No.2021M703256)+4 种基金the Director Funding of Hefei Institutes of Physical Science,Chinese Academy of Sciences(No.YZJJ2022QN16)the National Key R&D Program of China(Nos.2022YFE03050003,2019YFE03080200,2019Y FE03040002,and 2022YFE03070004)National Natural Science Foundation of China(Nos.12075284,12175277,12275315 and 12275311)the National Magnetic Confinement Fusion Science Program of China(No.2022YFE03040001)the Science Foundation of the Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-2021-08)。
文摘Microwave reflectometry is a powerful diagnostic that can measure the density profile and localized turbulence with high spatial and temporal resolution and will be used in ITER,so understanding the influence of plasma perturbations on the reflect signal is important.The characteristics of the reflect signal from profile reflectometry,the time-of-flight(TOF)signal associated with the MHD instabilities,are investigated in EAST.Using a 1D full-wave simulation code by the Finite-DifferenceTime-Domain(FDTD)method,it is well validated that the local density flattening could induce the discontinuity of the simulated TOF signal and an obvious change of reflect amplitude.Experimental TOF signals under different types of MHD instabilities(sawtooth,sawtooth precursors and tearing mode)are studied in detail and show agreement with the simulation.Two new improved algorithms for detecting and localizing the radial positions of the low-order rational surface,the cross-correlation and gradient threshold(CGT)method and the 2D convolutional neural network approach(CNN)are presented for the first time.It is concluded that TOF signal analysis from profile reflectometry can provide a straightforward and localized measurement of the plasma perturbation from the edge to the core simultaneously and may be a complement or correction to the q-profile control,which will be beneficial for the advanced tokamak operation.