AIM: To observe the therapeutic effect of intrasplenic transplantation with embryonic hepatocytes on amelioration of hereditary copper accumulation in toxic milk (TX) mouse modeling Wilson disease. METHODS: Donor hepa...AIM: To observe the therapeutic effect of intrasplenic transplantation with embryonic hepatocytes on amelioration of hereditary copper accumulation in toxic milk (TX) mouse modeling Wilson disease. METHODS: Donor hepatocytes were harvested from 14-d fetal liver of a pregnant homogeneous DL mouse. These cells were successively cultured, labeled with fluorescein dye Hoechst 33342 for 24 h, and sequentially infused into the spleen parenchyma of the recipient TX mice. No host immunosuppression measures were taken. Two and four weeks after transplantation, the recipients were killed for routine histologic investigation and immunohistochemistry study up to 4 wk after transplantation. The serum copper and ceruloplasmin concentrations of the recipient mice were determined by graphite furnace atomic absorption spectroscopy.RESULTS: In the following 2nd and 4th wk after transplantation, the donor hepatocytes could be visualized in the livers of 47.3% recipients. The serum ceruloplasmin and copper concentrations increased by 1.6-fold after 2 wk and 2.0-fold times after 4 wk respectively, which ultimately rose from about 30% of the normal level to nearly 60%(P<0.01). The hepatic copper concentration decreased 7.2%, 4 wk after transplantation. Pathologic examination showed that there were many actively proliferative hepatocyte precursor cells with specific embryonic hepatocyte marker AFP migrated into hepatic sinusoidsof the recipients. A large number of cells carrying hepatocytes marker and albumin were observed in the recipient spleen tissues.CONCLUSION: Embryonic hepatocytes are capable of differentiating into mature hepatocytes in vivo. After transplantation, the hereditary abnormalities of copper metabolism in TX mice could be corrected partially by intrasplenic transplantation of homogeneous embryonic hepatocytes.展开更多
Reducing the overall vehicle weight is an efficient,system-level approach to increase the drive range of electric vehicle,for which structural parts in auto-frame may be replaced by battery modules.Such battery module...Reducing the overall vehicle weight is an efficient,system-level approach to increase the drive range of electric vehicle,for which structural parts in auto-frame may be replaced by battery modules.Such battery modules must be structurally functional,e.g.,energy absorbing,while the battery cells are not necessarily loading–carrying.We designed and tested a butterfly-shaped battery module of prismatic cells,which could self-unfold when subjected to a compressive loading.Angle guides and frictionless joints were employed to facilitate the large deformation.Desired resistance to external loading was offered by additional energy absorption elements.The battery-module behavior and the battery-cell performance were controlled separately.Numerical simulation verified the experimental results.展开更多
Experimental data are presented concerning the drag force on a cylinder exposed to an argon plasma cross flow with temperatures about 10~4 K and velocities about 10~2m/s. Using a method of sweeping a cylindrical probe...Experimental data are presented concerning the drag force on a cylinder exposed to an argon plasma cross flow with temperatures about 10~4 K and velocities about 10~2m/s. Using a method of sweeping a cylindrical probe across an argon plasma jet, the total drag force on the cylinder can be measured as a function of the lateral distance of cylindrical probe with respect to the plasma-jet axis. Through the Abel inversion, the drag force for per unit of cylinder length and thus the drag coefficient of cylinder have been measured under plasma conditions and compared with the values obtained from the standard drag curve of the cylinder in an isothermal flow. Experimental results show that the measured drag forces are always less than their counterparts read from the standard drag curve with the same Reynolds numbers based on the oncoming plasma properties. The drag force on the cylinder exoposed to a thermal plasma flow is shown to be approximately proportional to the square root of cylinder diameter in the present experiment and it increases slightly with increasing surface temperature of the cylinder. It is also shown that applying a voltage between the drag probe and the anode of the plasma jet generator has little effect on the drag force of cylinder under the experimental conditions. The drag force on a cylinder with finite length exposed to an argon plasma with the axis parallel to the plasma jet is independent of ratio of cylinder length to its dismeter L/d for the cases when L/d≤1.展开更多
A kinetic-theory analysis is presented concerning the heat transfer from a rarefied plasma to a spherical particle for the extreme case of free-molecule regime and thin plasma sheath. A great temperature gradient is a...A kinetic-theory analysis is presented concerning the heat transfer from a rarefied plasma to a spherical particle for the extreme case of free-molecule regime and thin plasma sheath. A great temperature gradient is assumed to exist in the plasma, and thus a non-Maxwellian velocity distribution function is employed for each of the gas species. Analytical results show that the existence of a temperature gradient in the plasma causes a nonuniform distribution of the local heat flux density on the sphere surface, while the total heat flux to the whole particle is independent of the temperature gradient. The nonuniformity of the local heat flux distributioln is small even for the case with a temperature gradient as great as 10~6 K/m, but it may significantly enhance the thermophoretic force on an evaporating particle. Heat transfer is mainly caused by atoms at low gas temperatures with negligible ionization degree, while it can be attributed to ions and electrons at high plasma temperatures.展开更多
基金Supported by the National Natural Science Foundation of China, No. 30400147211 Project of Sun Yat-Sen University, No. 98138and the Key Subject Support Grants from Ministry of Public Health No. 2001321
文摘AIM: To observe the therapeutic effect of intrasplenic transplantation with embryonic hepatocytes on amelioration of hereditary copper accumulation in toxic milk (TX) mouse modeling Wilson disease. METHODS: Donor hepatocytes were harvested from 14-d fetal liver of a pregnant homogeneous DL mouse. These cells were successively cultured, labeled with fluorescein dye Hoechst 33342 for 24 h, and sequentially infused into the spleen parenchyma of the recipient TX mice. No host immunosuppression measures were taken. Two and four weeks after transplantation, the recipients were killed for routine histologic investigation and immunohistochemistry study up to 4 wk after transplantation. The serum copper and ceruloplasmin concentrations of the recipient mice were determined by graphite furnace atomic absorption spectroscopy.RESULTS: In the following 2nd and 4th wk after transplantation, the donor hepatocytes could be visualized in the livers of 47.3% recipients. The serum ceruloplasmin and copper concentrations increased by 1.6-fold after 2 wk and 2.0-fold times after 4 wk respectively, which ultimately rose from about 30% of the normal level to nearly 60%(P<0.01). The hepatic copper concentration decreased 7.2%, 4 wk after transplantation. Pathologic examination showed that there were many actively proliferative hepatocyte precursor cells with specific embryonic hepatocyte marker AFP migrated into hepatic sinusoidsof the recipients. A large number of cells carrying hepatocytes marker and albumin were observed in the recipient spleen tissues.CONCLUSION: Embryonic hepatocytes are capable of differentiating into mature hepatocytes in vivo. After transplantation, the hereditary abnormalities of copper metabolism in TX mice could be corrected partially by intrasplenic transplantation of homogeneous embryonic hepatocytes.
基金supported by the Advanced Research Projects Agency-Energy(ARPA-E) under Grant No.DEAR0000396
文摘Reducing the overall vehicle weight is an efficient,system-level approach to increase the drive range of electric vehicle,for which structural parts in auto-frame may be replaced by battery modules.Such battery modules must be structurally functional,e.g.,energy absorbing,while the battery cells are not necessarily loading–carrying.We designed and tested a butterfly-shaped battery module of prismatic cells,which could self-unfold when subjected to a compressive loading.Angle guides and frictionless joints were employed to facilitate the large deformation.Desired resistance to external loading was offered by additional energy absorption elements.The battery-module behavior and the battery-cell performance were controlled separately.Numerical simulation verified the experimental results.
文摘Experimental data are presented concerning the drag force on a cylinder exposed to an argon plasma cross flow with temperatures about 10~4 K and velocities about 10~2m/s. Using a method of sweeping a cylindrical probe across an argon plasma jet, the total drag force on the cylinder can be measured as a function of the lateral distance of cylindrical probe with respect to the plasma-jet axis. Through the Abel inversion, the drag force for per unit of cylinder length and thus the drag coefficient of cylinder have been measured under plasma conditions and compared with the values obtained from the standard drag curve of the cylinder in an isothermal flow. Experimental results show that the measured drag forces are always less than their counterparts read from the standard drag curve with the same Reynolds numbers based on the oncoming plasma properties. The drag force on the cylinder exoposed to a thermal plasma flow is shown to be approximately proportional to the square root of cylinder diameter in the present experiment and it increases slightly with increasing surface temperature of the cylinder. It is also shown that applying a voltage between the drag probe and the anode of the plasma jet generator has little effect on the drag force of cylinder under the experimental conditions. The drag force on a cylinder with finite length exposed to an argon plasma with the axis parallel to the plasma jet is independent of ratio of cylinder length to its dismeter L/d for the cases when L/d≤1.
文摘A kinetic-theory analysis is presented concerning the heat transfer from a rarefied plasma to a spherical particle for the extreme case of free-molecule regime and thin plasma sheath. A great temperature gradient is assumed to exist in the plasma, and thus a non-Maxwellian velocity distribution function is employed for each of the gas species. Analytical results show that the existence of a temperature gradient in the plasma causes a nonuniform distribution of the local heat flux density on the sphere surface, while the total heat flux to the whole particle is independent of the temperature gradient. The nonuniformity of the local heat flux distributioln is small even for the case with a temperature gradient as great as 10~6 K/m, but it may significantly enhance the thermophoretic force on an evaporating particle. Heat transfer is mainly caused by atoms at low gas temperatures with negligible ionization degree, while it can be attributed to ions and electrons at high plasma temperatures.