Separation of ternary C6 cyclic hydrocarbons,i.e.,benzene/cyclohexene/cyclohexane mixtures,is crucial but challenging in the petrochemical industry due to their extremely similar molecular sizes and physical propertie...Separation of ternary C6 cyclic hydrocarbons,i.e.,benzene/cyclohexene/cyclohexane mixtures,is crucial but challenging in the petrochemical industry due to their extremely similar molecular sizes and physical properties.Here,we design and synthesize a new Zn-based metal azolate framework(MAF),MAF-40,with a threedimensional(3D)honeycomb-like framework and 1D sugar-coated-berry type pore channels.By virtue of the strong coordination bonds and abundant trifluoromethyl groups embedded in the pores,MAF-40 exhibits excellent thermal stability(up to 400℃)and acid-base stability(within a pH range of 3–11).Moreover,MAF-40 shows ultrahigh benzene selectivity(38.8)from the ternary benzene/cyclohexene/cyclohexane mixtures,attributed to the strong adsorption affinity from fluorine for benzene and markedly different vip diffusion limited by the small aperture,which are confirmed by computational simulations and infrared spectra.Thus,the results indicated that MAF-40 would be a candidate adsorbent for the separation and purification of benzene from C6 cyclic hydrocarbons,and this work provides a new insight of synthesizing stable MOF materials for separating multicomponent chemical mixtures.展开更多
Coastal management in China is confronted with an urgent choice between natural restoration and maintenance of existing seawalls and reclaimed land for economic development.A key criterion for making this decision is ...Coastal management in China is confronted with an urgent choice between natural restoration and maintenance of existing seawalls and reclaimed land for economic development.A key criterion for making this decision is the resilience to coastal flooding,which depends on the ability to predict tidal level.Tidal duration asymmetry(TDA)is a key parameter in determination of the arrival and duration of flood tides.This study selected the western inner shelf of the Yellow Sea(WYS)as the study area and investigated the responses of TDA to different shoreline configurations and relative sea level rise.The responses of TDA to shoreline reconstruction yielded spatial variability locally and remotely.In the nearshore area,the responses of TDA to the complex ocean environment mainly originated from the combined functions of reflection,bottom friction,and advection,which controlled the energy transfer from M2 or S2 constituents to their overtides or compound tides.The sensitivity of TDA to coastline typologies was not limited to coastal waters but could stretch over the entire inner shelf.The vulnerability of tidal responses was due to the displacement of the M2 amphidrome of the Kelvin wave on the WYS,which in turn changed tidal energy fluxes over the regime.The relative sea level rise could intensify the feedback of TDA to seawalls and land reclamation.展开更多
We present an equivalent form of the expres- sions first obtained by Tada (Geophys J Int 164:653-669, 2006. doi: 10.1111/j. 1365-246X.2006.03868.x), which rep- resents the transient stress response of an infinite,...We present an equivalent form of the expres- sions first obtained by Tada (Geophys J Int 164:653-669, 2006. doi: 10.1111/j. 1365-246X.2006.03868.x), which rep- resents the transient stress response of an infinite, homo- geneous and isotropic medium to a constant slip rate on a triangular fault that continues perpetually after the slip onset. Our results are simpler than Tada's, and the corre- sponding codes have a higher running speed.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22090061,22488101,22475240,and 22231012)the State Key Laboratory of Catalysis(No.2024SKL-A-010).
文摘Separation of ternary C6 cyclic hydrocarbons,i.e.,benzene/cyclohexene/cyclohexane mixtures,is crucial but challenging in the petrochemical industry due to their extremely similar molecular sizes and physical properties.Here,we design and synthesize a new Zn-based metal azolate framework(MAF),MAF-40,with a threedimensional(3D)honeycomb-like framework and 1D sugar-coated-berry type pore channels.By virtue of the strong coordination bonds and abundant trifluoromethyl groups embedded in the pores,MAF-40 exhibits excellent thermal stability(up to 400℃)and acid-base stability(within a pH range of 3–11).Moreover,MAF-40 shows ultrahigh benzene selectivity(38.8)from the ternary benzene/cyclohexene/cyclohexane mixtures,attributed to the strong adsorption affinity from fluorine for benzene and markedly different vip diffusion limited by the small aperture,which are confirmed by computational simulations and infrared spectra.Thus,the results indicated that MAF-40 would be a candidate adsorbent for the separation and purification of benzene from C6 cyclic hydrocarbons,and this work provides a new insight of synthesizing stable MOF materials for separating multicomponent chemical mixtures.
基金supported by the Joint Foundation of the Ministry of Education(Grant No.8091B022123)the Water Science and Technology Project of Jiangsu Province(Grant No.2022023)+1 种基金the Project of the Key Technologies of Port Engineering Construction under Medium and Long Period Wave Conditions(Grant No.ZJ2015-1)the Open Funding from the Key Laboratory of Port,Waterway and Sedimentation Engineering of the Ministry of Communications in 2023(Grant No.Yk223001-3).
文摘Coastal management in China is confronted with an urgent choice between natural restoration and maintenance of existing seawalls and reclaimed land for economic development.A key criterion for making this decision is the resilience to coastal flooding,which depends on the ability to predict tidal level.Tidal duration asymmetry(TDA)is a key parameter in determination of the arrival and duration of flood tides.This study selected the western inner shelf of the Yellow Sea(WYS)as the study area and investigated the responses of TDA to different shoreline configurations and relative sea level rise.The responses of TDA to shoreline reconstruction yielded spatial variability locally and remotely.In the nearshore area,the responses of TDA to the complex ocean environment mainly originated from the combined functions of reflection,bottom friction,and advection,which controlled the energy transfer from M2 or S2 constituents to their overtides or compound tides.The sensitivity of TDA to coastline typologies was not limited to coastal waters but could stretch over the entire inner shelf.The vulnerability of tidal responses was due to the displacement of the M2 amphidrome of the Kelvin wave on the WYS,which in turn changed tidal energy fluxes over the regime.The relative sea level rise could intensify the feedback of TDA to seawalls and land reclamation.
基金supported by the National Natural Science Foundation of China (Grant No. 41674050)MOST Grant (2012CB417301)
文摘We present an equivalent form of the expres- sions first obtained by Tada (Geophys J Int 164:653-669, 2006. doi: 10.1111/j. 1365-246X.2006.03868.x), which rep- resents the transient stress response of an infinite, homo- geneous and isotropic medium to a constant slip rate on a triangular fault that continues perpetually after the slip onset. Our results are simpler than Tada's, and the corre- sponding codes have a higher running speed.