The present work provides a facile and efficient method for producing ultrafine copper powders.Ultrafine copper powders were synthesized through a solvothermal method,utilizing ethanol both as a solvent and a reducing...The present work provides a facile and efficient method for producing ultrafine copper powders.Ultrafine copper powders were synthesized through a solvothermal method,utilizing ethanol both as a solvent and a reducing agent.Specifically,by exploiting the weak reducing property of ethanol,the copper precursor is first converted to copper oxide and then further reduced to cuprous oxide and pure copper.Such a method can effectively control the morphology and particle size of the copper powder,reduce particle aggregation,and enhance oxidation resistance.It is cost-effective and produces fewer toxic by-products.Spherical copper particles with an average particle size of about 180 nm were obtained.The initial oxidation temperature is approximately 150℃,and the resulting copper powders can be stored stably under ambient conditions for at least 5 months,demonstrating excellent oxidation resistance and thermal stability.展开更多
文摘The present work provides a facile and efficient method for producing ultrafine copper powders.Ultrafine copper powders were synthesized through a solvothermal method,utilizing ethanol both as a solvent and a reducing agent.Specifically,by exploiting the weak reducing property of ethanol,the copper precursor is first converted to copper oxide and then further reduced to cuprous oxide and pure copper.Such a method can effectively control the morphology and particle size of the copper powder,reduce particle aggregation,and enhance oxidation resistance.It is cost-effective and produces fewer toxic by-products.Spherical copper particles with an average particle size of about 180 nm were obtained.The initial oxidation temperature is approximately 150℃,and the resulting copper powders can be stored stably under ambient conditions for at least 5 months,demonstrating excellent oxidation resistance and thermal stability.