期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
智能化自动包装系统在化纤在制品车间的应用 被引量:10
1
作者 王丽丽 徐慧 +2 位作者 程金海 邱野 孙洁香 《制造业自动化》 CSCD 2018年第11期135-137,141,共4页
针对传统化纤生产企业在制品车间采用人工手动包装的作业模式,提出了基于自动化、数字化、信息化、智能化的解决方案。该系统采用独立研发的自动化专机、自动化包装设备、自动化输送设备、工业机器人并结合数据采集、分析、管理,在车间... 针对传统化纤生产企业在制品车间采用人工手动包装的作业模式,提出了基于自动化、数字化、信息化、智能化的解决方案。该系统采用独立研发的自动化专机、自动化包装设备、自动化输送设备、工业机器人并结合数据采集、分析、管理,在车间信息化的管控(MES)下实现化纤丝饼在制品车间完成自动包装。通过推动全流程智能化、数字化建设,形成了在质量、成本、工艺、效率、柔性、能耗等方面综合竞争优势,全面实现智能化生产。本文较详细的介绍了化纤丝饼自动包装系统的设计理念、系统构成、软硬件结构以及物流关键流程,同时在满足常规生产需求的基础上,设计了多品种小批量、不同工艺段的信息跟踪模式,实现了智能化、柔性化生产。展示了具有先进设备、完善设计的自动包装系统,以及其给化纤丝饼包装方式带来的深刻变化。 展开更多
关键词 化纤丝饼 自动包装 信息跟踪
在线阅读 下载PDF
The Role of Nonlinear Forcing Singular Vector Tendency Error in Causing the"Spring Predictability Barrier"for ENSO 被引量:7
2
作者 DUAN Wansuo ZHAO Peng2 +1 位作者 HU Junya1 xu hui1 《Journal of Meteorological Research》 SCIE CSCD 2016年第6期853-866,共14页
With the Zebiak-Cane model, the present study investigates the role of model errors represented by the nonlinear forcing singular vector (NFSV) in the "spring predictability barrier" (SPB) phenomenon in ENSO pre... With the Zebiak-Cane model, the present study investigates the role of model errors represented by the nonlinear forcing singular vector (NFSV) in the "spring predictability barrier" (SPB) phenomenon in ENSO prediction. The NFSV-related model errors are found to have the largest negative effect on the uncertainties of El Nino prediction and they can be classified into two types: the first is featured with a zonal dipolar pattern of SST anomalies (SSTA), with the western poles centered in the equatorial central western Pacific exhibiting positive anomalies and the eastern poles in the equatorial eastern Pacific exhibiting negative anomalies; and the second is characterized by a pattern almost opposite to the first type. The first type of error tends to have the worst effects on El Nifio growth-phase predictions, whereas the latter often yields the largest negative effects on decaying-phase predictions. The evolution of prediction errors caused by NFSV- related errors exhibits prominent seasonality, with the fastest error growth in spring and/or summer; hence, these errors result in a significant SPB related to El Nifio events. The linear counterpart of NFSVs, the (linear) forcing singular vector (FSV), induces a less significant SPB because it contains smaller prediction errors. Random errors cannot generate an SPB for El Nifio events. These results show that the occurrence of an SPB is related to the spatial patterns of tendency errors. The NFSV tendency errors cause the most significant SPB for El Nifio events. In addition, NFSVs often concentrate these large value errors in a few areas within the equatorial eastern and central-western Pacific, which likely represent those areas sensitive to El Nifio predictions associated with model errors. Meanwhile, these areas are also exactly consistent with the sensitive areas related to initial errors determined by previous studies. This implies that additional observations in the sensitive areas would not only improve the accuracy of the initial field but also promote the reduction of model errors to greatly improve ENSO forecasts. 展开更多
关键词 spring predictability barrier model error optimal perturbation El Nifio event
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部