A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoot...A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoothing technologies.Some important properties of the proposed novel equivalent model are summarized.In addition,the stability properties of the proposed steepest descent-based neural networks for LCP are analyzed.In order to illustrate the theoretical results,we provide some numerical simulations and compare the proposed neural networks with existing neural networks based on the NCP-functions.Numerical results indicate that the performance of the proposed neural networks is effective and robust.展开更多
The box constrained variational inequality problem can be reformulated as a nonsmooth equation by using median operator.In this paper,we present a smoothing Newton method for solving the box constrained variational in...The box constrained variational inequality problem can be reformulated as a nonsmooth equation by using median operator.In this paper,we present a smoothing Newton method for solving the box constrained variational inequality problem based on a new smoothing approximation function.The proposed algorithm is proved to be well defined and convergent globally under weaker conditions.展开更多
基金Supported by the National Natural Science Foundation of China(12371378,41725017,11901098).
文摘A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoothing technologies.Some important properties of the proposed novel equivalent model are summarized.In addition,the stability properties of the proposed steepest descent-based neural networks for LCP are analyzed.In order to illustrate the theoretical results,we provide some numerical simulations and compare the proposed neural networks with existing neural networks based on the NCP-functions.Numerical results indicate that the performance of the proposed neural networks is effective and robust.
基金Supported by the NNSF of China(11071041)Supported by the Fujian Natural Science Foundation(2009J01002)Supported by the Fujian Department of Education Foundation(JA11270)
文摘The box constrained variational inequality problem can be reformulated as a nonsmooth equation by using median operator.In this paper,we present a smoothing Newton method for solving the box constrained variational inequality problem based on a new smoothing approximation function.The proposed algorithm is proved to be well defined and convergent globally under weaker conditions.