High-resolution seeing through complex scattering media such as turbid water,biological tissues,and mist is a significant challenge because the strong scattering scrambles the light paths and forms the scattering wall...High-resolution seeing through complex scattering media such as turbid water,biological tissues,and mist is a significant challenge because the strong scattering scrambles the light paths and forms the scattering wall.We propose an active polarized iterative optimization approach for high-resolution imaging through complex scattering media.By acquiring a series of sub-polarized images,we can capture the diverse pattern-illuminated images with various high-frequency component information caused by the Brownian motion of complex scattering materials,which are processed using the common-mode rejection of polarization characteristics to extract target information from scattering medium information.Following that,our computational reconstruction technique employs an iterative optimization algorithm that commences with patternilluminated Fourier ptychography for reconstructing the high-resolution scene.It is extremely important that our approach for high-resolution imaging through complex scattering media is not limited by priori information and optical memory effect.The proposed approach is suitable for not only dynamic but also static scattering media,which may find applications in the biomedicine field,such as skin abnormalities,non-invasive blood flow,and superficial tumors.展开更多
This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications.The widespread international research and activity in polarimetric imaging techni...This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications.The widespread international research and activity in polarimetric imaging techniques demonstrate their broad applications and interest.Polarization information is increasingly incorporated into convolutional neural networks(CNN)as a supplemental feature of objects to improve performance in computer vision task applications.Polarimetric imaging and deep learning can extract abundant information to address various challenges.Therefore,this article briefly reviews recent developments in data-driven polarimetric imaging,including polarimetric descattering,3D imaging,reflection removal,target detection,and biomedical imaging.Furthermore,we synthetically analyze the input,datasets,and loss functions and list the existing datasets and loss functions with an evaluation of their advantages and disadvantages.We also highlight the significance of data-driven polarimetric imaging in future research and development.展开更多
High-resolution imaging through randomly dynamic scattered fields and highly scattered walls is an extensively sought-after capability with potential applications in various fields such as underwater imaging,biomedica...High-resolution imaging through randomly dynamic scattered fields and highly scattered walls is an extensively sought-after capability with potential applications in various fields such as underwater imaging,biomedical imaging,and seeing through fog.Numerous methods have been proposed to unscramble object information from degraded scattered images,resulting in considerable improvements in image contrast in degraded scenarios[1].展开更多
Polarization underwater imaging is of great potential to target detection in turbid water. Typical methods are challenged by the requirement on degrees of polarization(Do Ps) of both target light and backscattering. A...Polarization underwater imaging is of great potential to target detection in turbid water. Typical methods are challenged by the requirement on degrees of polarization(Do Ps) of both target light and backscattering. A polarization descattering imaging method was developed using the Mueller matrix, which in turn derived a depolarization(Dep) index from the Mueller matrix to characterize scattering media by estimating the transmittance map by combining a developed optimal function.By quantifying light attenuation with the transmittance map, a clear vision of targets can be recovered. Only using the information of scattering media, the underwater vision under diverse water turbidity was enhanced by the results of experimental data.展开更多
This paper presents a polarization descattering imaging method for underwater detection in which the targets have nonuniform polarization characteristics. The core of this method takes the nonuniform distribution of t...This paper presents a polarization descattering imaging method for underwater detection in which the targets have nonuniform polarization characteristics. The core of this method takes the nonuniform distribution of the polarization information of the target-reflected light into account and expands the application field of underwater polarization imaging.Independent component analysis was used to separate the target light and backscattered light. Theoretical analysis and proof-of-concept experiments were employed to demonstrate the effectiveness of the proposed method in estimating target information. The proposed method showed superiority in accurately estimating the target information compared with other polarization imaging methods.展开更多
Lensless scattering imaging is a prospective approach to microscopy in which a high-resolution image of an object is reconstructed from one or more measured speckle patterns, thus providing a solution in situations wh...Lensless scattering imaging is a prospective approach to microscopy in which a high-resolution image of an object is reconstructed from one or more measured speckle patterns, thus providing a solution in situations where the use of imaging optics is not possible. However, current lensless scattering imaging methods are typically limited by the need for a light source with a narrowband spectrum. Here, we propose two general approaches that enable single-shot lensless scattering imaging under broadband illumination in both noninvasive [without point spread function(PSF) calibration] and invasive(with PSF calibration) modes. The first noninvasive approach is based on a numerical refinement of the broadband pattern in the cepstrum incorporated with a modified phase retrieval strategy. The latter invasive approach is correlation inspired and generalized within a computational optimization framework. Both approaches are experimentally verified using visible radiation with a full-width-at-half-maximum bandwidth as wide as 280 nm(Δλ∕λ = 44.8%) and a speckle contrast ratio as low as 0.0823. Because of its generality and ease of implementation, we expect this method to find widespread applications in ultrafast science,passive sensing, and biomedical applications.展开更多
Polarimetric imaging provides valuable insights into the polarization state of light interacting with a sample.It can infer crucial birefringence properties of specimens without using labels,thereby facilitating the d...Polarimetric imaging provides valuable insights into the polarization state of light interacting with a sample.It can infer crucial birefringence properties of specimens without using labels,thereby facilitating the diagnosis of diseases such as cancer and osteoarthritis.In this study,we present a novel polarimetric coded ptychography(pol-CP)approach that enables high-resolution,high-throughput gigapixel birefringence imaging on a chip.Our platform deviates from traditional lens-based systems by employing an integrated polarimetric coded sensor for lensless coherent diffraction imaging.Utilizing Jones calculus,we quantitatively determine the birefringence retardance and orientation information of biospecimens from the recovered images.Our portable pol-CP prototype can resolve the 435 nm linewidth on the resolution target,and the imaging field of view for a single acquisition is limited only by the detector size of 41 mm2.The prototype allows for the acquisition of gigapixel birefringence images with a 180 mm^(2) field of view in~3.5 min,a performance that rivals high-end whole slide scanner but at a small fraction of the cost.To demonstrate its biomedical applications,we perform high-throughput imaging of malaria-infected blood smears,locating parasites using birefringence contrast.We also generate birefringence maps of label-free thyroid smears to identify thyroid follicles.Notably,the recovered birefringence maps emphasize the same regions as autofluorescence images,underscoring the potential for rapid on-site evaluation of label-free biopsies.Our approach provides a turnkey and portable solution for lensless polarimetric analysis on a chip,with promising applications in disease diagnosis,crystal screening,and label-free chemical imaging,particularly in resource-constrained environments.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62205259,62075175,62105254,and 62375212)the National Key Laboratory of Infrared Detection Technologies(Grant No.IRDT-23-06)+1 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.XJSJ24028,XJS222202,ZYTS24097,and ZYTS24095)the Open Research Fund of Beijing Key Laboratory of Advanced Optical Remote Sensing Technology.
文摘High-resolution seeing through complex scattering media such as turbid water,biological tissues,and mist is a significant challenge because the strong scattering scrambles the light paths and forms the scattering wall.We propose an active polarized iterative optimization approach for high-resolution imaging through complex scattering media.By acquiring a series of sub-polarized images,we can capture the diverse pattern-illuminated images with various high-frequency component information caused by the Brownian motion of complex scattering materials,which are processed using the common-mode rejection of polarization characteristics to extract target information from scattering medium information.Following that,our computational reconstruction technique employs an iterative optimization algorithm that commences with patternilluminated Fourier ptychography for reconstructing the high-resolution scene.It is extremely important that our approach for high-resolution imaging through complex scattering media is not limited by priori information and optical memory effect.The proposed approach is suitable for not only dynamic but also static scattering media,which may find applications in the biomedicine field,such as skin abnormalities,non-invasive blood flow,and superficial tumors.
基金support from the National Natural Science Foundation of China(Nos.62205259,62075175,61975254,62375212,62005203 and 62105254)the Open Research Fund of CAS Key Laboratory of Space Precision Measurement Technology(No.B022420004)the Fundamental Research Funds for the Central Universities(No.ZYTS23125).
文摘This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications.The widespread international research and activity in polarimetric imaging techniques demonstrate their broad applications and interest.Polarization information is increasingly incorporated into convolutional neural networks(CNN)as a supplemental feature of objects to improve performance in computer vision task applications.Polarimetric imaging and deep learning can extract abundant information to address various challenges.Therefore,this article briefly reviews recent developments in data-driven polarimetric imaging,including polarimetric descattering,3D imaging,reflection removal,target detection,and biomedical imaging.Furthermore,we synthetically analyze the input,datasets,and loss functions and list the existing datasets and loss functions with an evaluation of their advantages and disadvantages.We also highlight the significance of data-driven polarimetric imaging in future research and development.
文摘High-resolution imaging through randomly dynamic scattered fields and highly scattered walls is an extensively sought-after capability with potential applications in various fields such as underwater imaging,biomedical imaging,and seeing through fog.Numerous methods have been proposed to unscramble object information from degraded scattered images,resulting in considerable improvements in image contrast in degraded scenarios[1].
基金This work was supported by the National Natural Science Foundation of China(NSFC)(Nos.62075175 and 62005203)the Key Laboratory of Optical Engineering,Chinese Academy of Sciences。
文摘Polarization underwater imaging is of great potential to target detection in turbid water. Typical methods are challenged by the requirement on degrees of polarization(Do Ps) of both target light and backscattering. A polarization descattering imaging method was developed using the Mueller matrix, which in turn derived a depolarization(Dep) index from the Mueller matrix to characterize scattering media by estimating the transmittance map by combining a developed optimal function.By quantifying light attenuation with the transmittance map, a clear vision of targets can be recovered. Only using the information of scattering media, the underwater vision under diverse water turbidity was enhanced by the results of experimental data.
基金This work was supported by the Key Laboratory of Optical Engineering,Chinese Academy of Sciences(No.QC20191097)the National Natural Science Foundation of China(NSFC)(Nos.62075175 and 62005203).
文摘This paper presents a polarization descattering imaging method for underwater detection in which the targets have nonuniform polarization characteristics. The core of this method takes the nonuniform distribution of the polarization information of the target-reflected light into account and expands the application field of underwater polarization imaging.Independent component analysis was used to separate the target light and backscattered light. Theoretical analysis and proof-of-concept experiments were employed to demonstrate the effectiveness of the proposed method in estimating target information. The proposed method showed superiority in accurately estimating the target information compared with other polarization imaging methods.
基金National Natural Science Foundation of China(61975254,62075175)Central University Basic Scientific Research Business Expenses Special Funds(XJS210506,XJS222202)111 Project(B17035)。
文摘Lensless scattering imaging is a prospective approach to microscopy in which a high-resolution image of an object is reconstructed from one or more measured speckle patterns, thus providing a solution in situations where the use of imaging optics is not possible. However, current lensless scattering imaging methods are typically limited by the need for a light source with a narrowband spectrum. Here, we propose two general approaches that enable single-shot lensless scattering imaging under broadband illumination in both noninvasive [without point spread function(PSF) calibration] and invasive(with PSF calibration) modes. The first noninvasive approach is based on a numerical refinement of the broadband pattern in the cepstrum incorporated with a modified phase retrieval strategy. The latter invasive approach is correlation inspired and generalized within a computational optimization framework. Both approaches are experimentally verified using visible radiation with a full-width-at-half-maximum bandwidth as wide as 280 nm(Δλ∕λ = 44.8%) and a speckle contrast ratio as low as 0.0823. Because of its generality and ease of implementation, we expect this method to find widespread applications in ultrafast science,passive sensing, and biomedical applications.
基金National Natural Science Foundation of China(61975254,62075175)。
文摘Polarimetric imaging provides valuable insights into the polarization state of light interacting with a sample.It can infer crucial birefringence properties of specimens without using labels,thereby facilitating the diagnosis of diseases such as cancer and osteoarthritis.In this study,we present a novel polarimetric coded ptychography(pol-CP)approach that enables high-resolution,high-throughput gigapixel birefringence imaging on a chip.Our platform deviates from traditional lens-based systems by employing an integrated polarimetric coded sensor for lensless coherent diffraction imaging.Utilizing Jones calculus,we quantitatively determine the birefringence retardance and orientation information of biospecimens from the recovered images.Our portable pol-CP prototype can resolve the 435 nm linewidth on the resolution target,and the imaging field of view for a single acquisition is limited only by the detector size of 41 mm2.The prototype allows for the acquisition of gigapixel birefringence images with a 180 mm^(2) field of view in~3.5 min,a performance that rivals high-end whole slide scanner but at a small fraction of the cost.To demonstrate its biomedical applications,we perform high-throughput imaging of malaria-infected blood smears,locating parasites using birefringence contrast.We also generate birefringence maps of label-free thyroid smears to identify thyroid follicles.Notably,the recovered birefringence maps emphasize the same regions as autofluorescence images,underscoring the potential for rapid on-site evaluation of label-free biopsies.Our approach provides a turnkey and portable solution for lensless polarimetric analysis on a chip,with promising applications in disease diagnosis,crystal screening,and label-free chemical imaging,particularly in resource-constrained environments.