Microstructures of nanoporous Pd are essentially important for its physical and chemical properties.In this work,we show that the microstructures of nanoporous Pd can be tuned by adjusting compositions of the precurso...Microstructures of nanoporous Pd are essentially important for its physical and chemical properties.In this work,we show that the microstructures of nanoporous Pd can be tuned by adjusting compositions of the precursor alloys,and dealloying and heat treatment parameters.Both the ligament and pore sizes decrease with increasing the electrochemical potential upon dealloying and the concentration of noble component in the precursor alloys.Heat treatment causes coarsening of the nanoporous structure.Above a critical temperature,the nanoporous structures are subjected to significant coarsening.Below the critical temperature,surface diffusion is believed to dominate the coarsening process.Above the critical temperature,the nanoporous structure coarsens remarkably at a rather high rate,which is ascribed to a multiple-mechanism controlled process.展开更多
In this paper we investigated the optical properties of ZnO and Mn doped ZnO nanocrystals that were fabricated by a vapor phase transport growth process, using zinc acetate dihydrate with or without Mn in a constant O...In this paper we investigated the optical properties of ZnO and Mn doped ZnO nanocrystals that were fabricated by a vapor phase transport growth process, using zinc acetate dihydrate with or without Mn in a constant O2/Ar mixture gas flowing through the furnace at 400600℃, respectively. The as grown ZnO nanocrystals are homogeneous with a mean size of 19 nm observed by scanning electron microscope(SEM). The optical characteristics were analyzed by absorption spectra and photoluminescence(PL) spectra at room-temperature. For ZnO nanocrystals, a strong and predominant UV emission peaked at 377 nm was found in the PL spectra. For Mn doped ZnO nanocrystals, in addition to the strong UV emission, a strong blue emission peaked at 435 nm was observed as well. By doping Mn ions, the major UV emission shifts from 377 nm to 408 nm, showing that Mn ions were not only incorporated into ZnO Ncs, but also introduced an impurity level in the bandgap. Moreover, with the concentration of Mn increasing, the relative intensities of the two emissions change largely, and the photoluminescence mechanism of them is discussed.展开更多
This paper reviews the performances of some newly developed reluctance machines with different winding configurations,excitation methods,stator and rotor structures,and slot/pole number combinations.Both the double la...This paper reviews the performances of some newly developed reluctance machines with different winding configurations,excitation methods,stator and rotor structures,and slot/pole number combinations.Both the double layer conventional(DLC-),double layer mutually-coupled(DLMC),single layer conventional(SLC-),and single layer mutually-coupled(SLMC-),as well as fully-pitched(FP)winding configurations have been considered for both rectangular wave and sinewave excitations.Different conduction angles such as unipolar120°elec.,unipolar/bipolar180°elec.,bipolar240°elec.and bipolar360°elec.have been adopted and the most appropriate conduction angles have been obtained for the SRMs with different winding configurations.In addition,with appropriate conduction angles,the 12-slot/14-pole SRMs with modular stator structure is found to produce similar average torque,but lower torque ripple and iron loss when compared to non-modular 12-slot/8-pole SRMs.With sinewave excitation,the doubly salient synchronous reluctance machines with the DLMC winding can produce the highest average torque at high currents and achieve the highest peak efficiency as well.In order to compare with the conventional synchronous reluctance machines(SynRMs)having flux barriers inside the rotor,the appropriate rotor topologies to obtain the maximum average torque have been investigated for different winding configurations and slot/pole number combinations.Furthermore,some prototypes have been built with different winding configurations,stator structures,and slot/pole combinations to validate the predictions.展开更多
The cosmic-ray(CR)electrons and positrons in space are of considerable significance for studying the origin and propagation of CRs.The satellite-borne detector Dark Matter Particle Explorer(DAMPE)has been used to meas...The cosmic-ray(CR)electrons and positrons in space are of considerable significance for studying the origin and propagation of CRs.The satellite-borne detector Dark Matter Particle Explorer(DAMPE)has been used to measure the separate electron and positron spectra,as well as the positron fraction.In this study,the Earth's magnetic field is used to distinguish CR electrons and positrons,as the DAMPE detector does not carry an onboard magnet.The energy for the measurements ranges from 10 to 20 GeV,which is currently limited at high energy by the zenith-pointing orientation of DAMPE.The results are consistent with previous measurements based on the magnetic spectrometer by AMS-02 and PAMELA,whereas the results of Fermi-LAT appear to be systematically shifted to larger values.展开更多
By analyzing ψ(3686) data sample containing (107.7±0.6)×10^(6) events taken with the BESIII detector at the BEPCII storage ring in 2009,the χ_(c 0) resonance parameters are precisely measured using χ_(c 0...By analyzing ψ(3686) data sample containing (107.7±0.6)×10^(6) events taken with the BESIII detector at the BEPCII storage ring in 2009,the χ_(c 0) resonance parameters are precisely measured using χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) events.The mass of χ_(c 0) is determined to be M (χ_(c 0))=(3415.63±0.07±0.07±0.07)MeV/c^(2),and its full width is F (χ_(c 0))=(12.52±0.12±0.13)MeV,where the first uncertainty is statistical,the second systematic,and the third for mass comes from χ_(c 2) mass uncertainty.These measurements improve the precision of χ_(c 0) mass by a factor of four and width by one order of magnitude over the previous individual measurements,and significantly boost our knowledge about the charmonium spectrum.Together with additional (345.4±2.6)×10^(6)(3686) data events taken in 2012,the decay branching fractions of χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) are measured as well,with precision improved by a factor of three compared to previous measurements.These χ_(c 0) decay branching fractions provide important inputs for the study of glueballs.展开更多
Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limi...Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limit on its partial branching fraction for photon energies E_(γ)>10 MeV was determined to be 1.2×10^(-5)at a 90%confidence level;this excludes most current theoretical predictions.A sophisticated deep learning approach,which includes thorough validation and is based on the Transformer architecture,was implemented to efficiently distinguish the signal from massive backgrounds.展开更多
Using an electron-positron collision data sample corresponding to(1.0087±0.0044)×10^(10)events collected using the BESIII detector at the BEPCII collider,we firstly search for the lepton number violation de...Using an electron-positron collision data sample corresponding to(1.0087±0.0044)×10^(10)events collected using the BESIII detector at the BEPCII collider,we firstly search for the lepton number violation decayφ→π^(+)π^(+)e^(-)e^(-)via J/ψ→φη.No obviously signals are found.The upper limit on the branching fraction ofφ→π^(+)π^(+)e^(-)e^(-)is set to be 1.3×10^(-5)at the 90%confidence level.展开更多
Lepton number violation decayω→π^(+)π^(+)e^(-)e^(-)+c.c.is searched for via J/ψ→ωηusing a data sample of(1.0087±0.0044)×10^(10)J/ψevents collected via the BESIII detector at the BEPCII collider.No s...Lepton number violation decayω→π^(+)π^(+)e^(-)e^(-)+c.c.is searched for via J/ψ→ωηusing a data sample of(1.0087±0.0044)×10^(10)J/ψevents collected via the BESIII detector at the BEPCII collider.No significant signal is observed,and the upper limit on the branching fraction ofω→π^(+)π^(+)e^(-)e^(-)+c.c.at the 90%confidence level is determined for the first time to be 2.8×10^(-6).展开更多
We search for the leptonic decay D^(+)→e^(+)ν_(e)using an e+e-collision data sample with an integrated luminosity of 20.3 fb-1collected with the BESIII detector at a center-of-mass energy of 3.773 GeV.Significant si...We search for the leptonic decay D^(+)→e^(+)ν_(e)using an e+e-collision data sample with an integrated luminosity of 20.3 fb-1collected with the BESIII detector at a center-of-mass energy of 3.773 GeV.Significant signal is not observed,and an upper limit on the branching fraction of D^(+)→e^(+)ν_(e)is set as 9.7×10^(-7),at a confidence level of 90%.Our upper limit is an order of magnitude smaller than the previous limit for this decay mode.展开更多
Utilizing 4.5 fb^(-1)ofe^(+)e^(-)annihilation data collected at center-of-mass energies ranging from 4599.53 MeV to 4698.82 MeV by the BESIII detector at the BEPCII collider,we searched for singly Cabibbo-suppressed h...Utilizing 4.5 fb^(-1)ofe^(+)e^(-)annihilation data collected at center-of-mass energies ranging from 4599.53 MeV to 4698.82 MeV by the BESIII detector at the BEPCII collider,we searched for singly Cabibbo-suppressed hadronic decaysΛ_(c)^(+)→Σ^(0)K^(+)π^(0)andΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−)and with a single-tag method.No significant signals were observed for both decays.The upper limits on the branching fractions at the 90%confidence level were determined to be 5.0×10^(-4)for and forΛ_(c)^(+)→Σ^(0)K^(+)π^(0)and 6.5×10^(-4)forΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−).展开更多
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays...Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.展开更多
The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the ...The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6.展开更多
We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the ...We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the datasets taken from December 2021 to June 2022,from November 2022 to June 2023,and from October 2023 to February 2024 were determined to be 4.995±0.019 fb^(-1),8.157±0.031 fb^(-1),and 4.191±0.016 fb^(-1),respectively,by analyzing large angle Bhabha scattering events.The uncertainties are dominated by systematic effects,and the statistical uncertainties are negligible.Our results provide essential input for future analyses and precision measurements.展开更多
During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the ...During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the study of excited charmonium and charmoniumlike states.By analyzing the di-muon process e^(+)e^(-)→(γISR=FSR)μ^(+)μ^(-),we measure the center-of-mass energies of the data samples with a precision of 0.6 MeV.Through a run-by-run study,we find that the center-of-mass energies were stable throughout most of the data-collection period.展开更多
There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B fac...There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity.展开更多
Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,na...Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses.展开更多
The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In t...The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows.展开更多
Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalcul...Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalculated to be(224.0±1.3)×10^(6) and(1088.5±4.4)×10^(6),respectively;these numbers are in good agreement with the previous measurements. For the J/ψ sample taken in 2017-2019,the number of events was determined to be(8774.0±39.4)×10^(6).The total number of J/ψ events collected with the BESIII detector was determined to be(10087±44)×10^(6),where the uncertainty is dominated by systematic effects,and the statistical uncertainty is negligible.展开更多
Studies of e^+e~→D_s^+■^((*)0)K^-and the P-wave charmed-strange mesons are performed based on an e^+e^-collision data sample corresponding to an integrated luminosity of 567 pb^(-1) collected with the BESIII detecto...Studies of e^+e~→D_s^+■^((*)0)K^-and the P-wave charmed-strange mesons are performed based on an e^+e^-collision data sample corresponding to an integrated luminosity of 567 pb^(-1) collected with the BESIII detector at s^(1/2)=4.600 GeV. The processes of e^+e^-→D_s^+■^(*0)K^- and D_s^+■~0K^- are observed for the first time and are found to be dominated by the modes D_s^+D_(s1)(2536)^-and D_s^+D_(s2)~*(2573)^-, respectively. The Born cross sections are measured to be σ~B(e^+e^-→D_s^+■^(*0)K^-) =(10.1±2.3±0.8) pb and σ~B(e^+e^-→D_s^+■~0K^-) =(19.4±2.3± 1.6) pb, and the products of Born cross section and the decay branching fraction are measured to be σ~B(e^+e^-→D_s^+D_(s1)(2536)^-+c.c.)·B(D_(s1)(2536)^-→■^(*0)K^-)=(7.5±1.8±0.7) pb and σ~B(e^+e^-→D_s^+D_(s2)~*(2573)^-+ c.c.)·B(D_(s2)~*(2573)^-→■~0 K^-)=(19.7 ± 2.9 ±2.0) pb. For the D_(s1)(2536)^-and D_(s2)~*(2573)^-mesons, the masses and widths are measured to be M(D_(s1)(2536)^-)=(2537.7±0.5 ±3.1) MeV/c2, Γ(D_(s1)(2536)^-) =(1.7 ±1.2 ±0.6)MeV, and M(D_(s2)~*(2573)^-)=(2570.7±2.0 ±1.7) MeV/c^2, Γ(D_(s2)~*(2573)^-)=(17.2 ±3.6 ±1.1) MeV. The spin-parity of the D_(s2)~*(2573)^-meson is determined to be J^p= 2^+. In addition, the processes e^+e^-→D_s^+■^((*)0)K^-are searched for using the data samples taken at four(two) center-of-mass energies between 4.416(4.527) and 4.575 GeV, and upper limits at the 90% confidence level on the cross sections are determined.展开更多
Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),th...Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),the process e^(+)e^(-)→pppñπ+c.c.is observed for the first time with a statistical significance of 11.5σ.The average Born cross sections in the energy ranges of(4.160,4.380)GeV,(4.400,4.600)GeV and(4.610,4.700)GeV are measured to be(21.5±5.7±1.2)fb,(46.3±10.6±2.5)fb and(59.0±9.4±3.2)fb,respectively,where the first uncertainties are statistical and the second are systematic.The line shapes of the pñ and ppπ^(-)invariant mass spectra are consistent with phase space distributions,indicating that no hexaquark or di-baryon state is observed.展开更多
基金supported financially by the National Natural Science Foundation of China(Nos.51771153,51371147,51790481 and 51431008)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX201825)。
文摘Microstructures of nanoporous Pd are essentially important for its physical and chemical properties.In this work,we show that the microstructures of nanoporous Pd can be tuned by adjusting compositions of the precursor alloys,and dealloying and heat treatment parameters.Both the ligament and pore sizes decrease with increasing the electrochemical potential upon dealloying and the concentration of noble component in the precursor alloys.Heat treatment causes coarsening of the nanoporous structure.Above a critical temperature,the nanoporous structures are subjected to significant coarsening.Below the critical temperature,surface diffusion is believed to dominate the coarsening process.Above the critical temperature,the nanoporous structure coarsens remarkably at a rather high rate,which is ascribed to a multiple-mechanism controlled process.
基金supported in parts by the National Natural Science Foundation of China(No.60776004,60976071)the Laboratory for Thin Film Microfabrication of the Ministry of Education
文摘In this paper we investigated the optical properties of ZnO and Mn doped ZnO nanocrystals that were fabricated by a vapor phase transport growth process, using zinc acetate dihydrate with or without Mn in a constant O2/Ar mixture gas flowing through the furnace at 400600℃, respectively. The as grown ZnO nanocrystals are homogeneous with a mean size of 19 nm observed by scanning electron microscope(SEM). The optical characteristics were analyzed by absorption spectra and photoluminescence(PL) spectra at room-temperature. For ZnO nanocrystals, a strong and predominant UV emission peaked at 377 nm was found in the PL spectra. For Mn doped ZnO nanocrystals, in addition to the strong UV emission, a strong blue emission peaked at 435 nm was observed as well. By doping Mn ions, the major UV emission shifts from 377 nm to 408 nm, showing that Mn ions were not only incorporated into ZnO Ncs, but also introduced an impurity level in the bandgap. Moreover, with the concentration of Mn increasing, the relative intensities of the two emissions change largely, and the photoluminescence mechanism of them is discussed.
文摘This paper reviews the performances of some newly developed reluctance machines with different winding configurations,excitation methods,stator and rotor structures,and slot/pole number combinations.Both the double layer conventional(DLC-),double layer mutually-coupled(DLMC),single layer conventional(SLC-),and single layer mutually-coupled(SLMC-),as well as fully-pitched(FP)winding configurations have been considered for both rectangular wave and sinewave excitations.Different conduction angles such as unipolar120°elec.,unipolar/bipolar180°elec.,bipolar240°elec.and bipolar360°elec.have been adopted and the most appropriate conduction angles have been obtained for the SRMs with different winding configurations.In addition,with appropriate conduction angles,the 12-slot/14-pole SRMs with modular stator structure is found to produce similar average torque,but lower torque ripple and iron loss when compared to non-modular 12-slot/8-pole SRMs.With sinewave excitation,the doubly salient synchronous reluctance machines with the DLMC winding can produce the highest average torque at high currents and achieve the highest peak efficiency as well.In order to compare with the conventional synchronous reluctance machines(SynRMs)having flux barriers inside the rotor,the appropriate rotor topologies to obtain the maximum average torque have been investigated for different winding configurations and slot/pole number combinations.Furthermore,some prototypes have been built with different winding configurations,stator structures,and slot/pole combinations to validate the predictions.
基金supported by the National Key Research and Development Program of China(No.2022YFF0503303)the National Natural Science Foundation of China(Nos.12220101003,12275266,12003076,12022503,12103094 and U2031149)+8 种基金Outstanding Youth Science Foundation of NSFC(No.12022503)the Project for Young Scientists in Basic Research of the Chinese Academy of Sciences(No.YSBR-061)the Strategic Priority Program on Space Science of Chinese Academy of Sciences(No.E02212A02S)the Youth Innovation Promotion Association of CAS(No.2021450)the Young Elite Scientists Sponsorship Program by CAST(No.YESS20220197)the New Cornerstone Science Foundation through the XPLORER PRIZEthe Program for Innovative Talents and Entrepreneur in Jiangsu.In Europesupported by the Swiss National Science Foundation(SNSF),Switzerland,the National Institute for Nuclear Physics(INFN),Italythe European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(No.851103).
文摘The cosmic-ray(CR)electrons and positrons in space are of considerable significance for studying the origin and propagation of CRs.The satellite-borne detector Dark Matter Particle Explorer(DAMPE)has been used to measure the separate electron and positron spectra,as well as the positron fraction.In this study,the Earth's magnetic field is used to distinguish CR electrons and positrons,as the DAMPE detector does not carry an onboard magnet.The energy for the measurements ranges from 10 to 20 GeV,which is currently limited at high energy by the zenith-pointing orientation of DAMPE.The results are consistent with previous measurements based on the magnetic spectrometer by AMS-02 and PAMELA,whereas the results of Fermi-LAT appear to be systematically shifted to larger values.
基金Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400,2023YFA1606000)National Natural Science Foundation of China(NSFC)(11635010,11735014,11935015,11935016,11935018,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+17 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)100 Talents Program of CAS(ZR2022JQ02,ZR2024QA151)supported by Shandong Provincial Natural Science Foundationsupported by the China Postdoctoral Science Foundation(2023M742100)The Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyGerman Research Foundation DFG(FOR5327,GRK 2149)Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076,B50G670107)Polish National Science Centre(2019/35/O/ST2/02907)Swedish Research Council(2019.04595)The Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)U.S.Department of Energy(DE-FG02-05ER41374)。
文摘By analyzing ψ(3686) data sample containing (107.7±0.6)×10^(6) events taken with the BESIII detector at the BEPCII storage ring in 2009,the χ_(c 0) resonance parameters are precisely measured using χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) events.The mass of χ_(c 0) is determined to be M (χ_(c 0))=(3415.63±0.07±0.07±0.07)MeV/c^(2),and its full width is F (χ_(c 0))=(12.52±0.12±0.13)MeV,where the first uncertainty is statistical,the second systematic,and the third for mass comes from χ_(c 2) mass uncertainty.These measurements improve the precision of χ_(c 0) mass by a factor of four and width by one order of magnitude over the previous individual measurements,and significantly boost our knowledge about the charmonium spectrum.Together with additional (345.4±2.6)×10^(6)(3686) data events taken in 2012,the decay branching fractions of χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) are measured as well,with precision improved by a factor of three compared to previous measurements.These χ_(c 0) decay branching fractions provide important inputs for the study of glueballs.
基金supported in part by National Key R&D Program of China(2020YFA0406400,2023YFA1606000,2020YFA0406300)National Natural Science Foundation of China(NSFC)(11635010,11735014,11935015,11935016,11935018,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+18 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS(YSBR-101)100 Talents Program of CASCAS Project for Young Scientists in Basic Research(YSBR-117)The Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyAgencia Nacional de Investigación y Desarrollo de Chile(ANID),Chile(ANID PIA/APOYO AFB230003)German Research Foundation DFG(FOR5327)Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B50G670107)Polish National Science Centre(2019/35/O/ST2/02907)Swedish Research Council(2019.04595)The Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)U.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limit on its partial branching fraction for photon energies E_(γ)>10 MeV was determined to be 1.2×10^(-5)at a 90%confidence level;this excludes most current theoretical predictions.A sophisticated deep learning approach,which includes thorough validation and is based on the Transformer architecture,was implemented to efficiently distinguish the signal from massive backgrounds.
基金supported in part by the National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(12035009,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017)+17 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASthe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and Cosmologythe European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement(894790)the German Research Foundation DFG(455635585),the Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF2022R1A2C1092335)National Science and Technology Fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907)Swedish Research Council(2019.04595)the Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)the U.S.Department of Energy(DE-FG02-05ER41374).
文摘Using an electron-positron collision data sample corresponding to(1.0087±0.0044)×10^(10)events collected using the BESIII detector at the BEPCII collider,we firstly search for the lepton number violation decayφ→π^(+)π^(+)e^(-)e^(-)via J/ψ→φη.No obviously signals are found.The upper limit on the branching fraction ofφ→π^(+)π^(+)e^(-)e^(-)is set to be 1.3×10^(-5)at the 90%confidence level.
基金Supported in part by National Key R&D Program of China(2023YFA1606000,2023YFA1606704)National Natural Science Foundation of China(NSFC)(12035009,11875170,11635010,11935015,11935016,11935018,12025502,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Program,CAS(YSBR-101)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyAgencia Nacional de Investigación y Desarrollo de Chile(ANID)Chile(ANID PIA/APOYO AFB230003)ERC(758462)German Research Foundation DFG(FOR5327)Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaPolish National Science Centre(2024/53/B/ST2/00975)STFC(United Kingdom)Swedish Research Council(2019.04595)U.S.Department of Energy(DE-FG02-05ER41374)。
文摘Lepton number violation decayω→π^(+)π^(+)e^(-)e^(-)+c.c.is searched for via J/ψ→ωηusing a data sample of(1.0087±0.0044)×10^(10)J/ψevents collected via the BESIII detector at the BEPCII collider.No significant signal is observed,and the upper limit on the branching fraction ofω→π^(+)π^(+)e^(-)e^(-)+c.c.at the 90%confidence level is determined for the first time to be 2.8×10^(-6).
基金Supported in part by the National Key R&D Program of China(2023YFA1606000,2020YFA0406400,2020YFA0406300)the National Natural Science Foundation of China(NSFC)(11635010,11735014,11935015,11935016,11875054,11935018,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+12 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)the Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U2032104,U1832207)the 100 Talents Program of CAS,the Excellent Youth Foundation of Henan Scientific Commitee(242300421044)the Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and Cosmology,the German Research Foundation DFG(FOR5327)the Istituto Nazionale di Fisica Nucleare,Italy,the Knut and Alice Wallenberg Foundation(2021.0174,2021.0299)the Ministry of Development of Turkey(DPT2006K-120470),the National Research Foundation of Korea(NRF-2022R1A2C1092335)the National Science and Technology Fund of Mongoliathe National Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research,and Innovation of Thailand(B16F640076,B50G670107)the Polish National Science Center(2019/35/O/ST2/02907)the Swedish Research Council(2019.04595)the Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)the US Department of Energy(DE-FG02-05ER41374)。
文摘We search for the leptonic decay D^(+)→e^(+)ν_(e)using an e+e-collision data sample with an integrated luminosity of 20.3 fb-1collected with the BESIII detector at a center-of-mass energy of 3.773 GeV.Significant signal is not observed,and an upper limit on the branching fraction of D^(+)→e^(+)ν_(e)is set as 9.7×10^(-7),at a confidence level of 90%.Our upper limit is an order of magnitude smaller than the previous limit for this decay mode.
基金supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400,2023YFA1606000)National Natural Science Foundation of China(NSFC)(12205141,11635010,11735014,11935015,11935016,11935018,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+16 种基金Natural Science Foundation of Hunan Province(2024JJ2044)the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyGerman Research Foundation DFG(FOR5327)Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076,B50G670107)Polish National Science Centre(2019/35/O/ST2/02907)Swedish Research Council(2019.04595)The Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)U.S.Department of Energy(DE-FG02-05ER41374)。
文摘Utilizing 4.5 fb^(-1)ofe^(+)e^(-)annihilation data collected at center-of-mass energies ranging from 4599.53 MeV to 4698.82 MeV by the BESIII detector at the BEPCII collider,we searched for singly Cabibbo-suppressed hadronic decaysΛ_(c)^(+)→Σ^(0)K^(+)π^(0)andΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−)and with a single-tag method.No significant signals were observed for both decays.The upper limits on the branching fractions at the 90%confidence level were determined to be 5.0×10^(-4)for and forΛ_(c)^(+)→Σ^(0)K^(+)π^(0)and 6.5×10^(-4)forΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−).
基金Supported in part by the National Key R&D Program of China(2020YFA0406300,2020YFA0406400)the National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12105276,12122509,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832103,U1832207,U2032111)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(455635585),Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.
基金supported in part by National Key R&D Program of China under Contracts Nos.2020YFA0406300,2020YFA0406400National Natural Science Foundation of China(NSFC)under Contracts Nos.12150004,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017+17 种基金the Program of Science and Technology Development Plan of Jilin Province of China under Contract Nos.20210508047RQ and 20230101021JCthe Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No.U1832207CAS Key Research Program of Frontier Sciences under Contracts Nos.QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No.894790German Research Foundation DFG under Contracts Nos.455635585,Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey under Contract No.DPT2006K-120470National Research Foundation of Korea under Contract No.NRF-2022R1A2C1092335National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand under Contract No.B16F640076Polish National Science Centre under Contract No.2019/35/O/ST2/02907The Swedish Research CouncilU.S.Department of Energy under Contract No.DE-FG02-05ER41374。
文摘The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6.
基金Supported in part by the National Key R&D Program of China(2020YFA0406400,2020YFA0406300,2023YFA1606000)the National Natural Science Foundation of China(123B2077,12035009,11635010,11735014,11875054,11935015,11935016,11935018,11961141012,12025502,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+8 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Program,the CAS Center for Excellence in Particle Physics(CCEPP),the Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U2032104,U1832207)the Excellent Youth Foundation of Henan Scientific Commitee(242300421044)100 Talents Program of CASthe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and Cosmology,German Research Foundation DFG(455635585,FOR5327,GRK 2149)Istituto Nazionale di Fisica Nucleare,Italy,Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of Mongolia,National Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907),the Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the datasets taken from December 2021 to June 2022,from November 2022 to June 2023,and from October 2023 to February 2024 were determined to be 4.995±0.019 fb^(-1),8.157±0.031 fb^(-1),and 4.191±0.016 fb^(-1),respectively,by analyzing large angle Bhabha scattering events.The uncertainties are dominated by systematic effects,and the statistical uncertainties are negligible.Our results provide essential input for future analyses and precision measurements.
基金Supported in part by National Key Research and Development Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012)+12 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CAS,INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology,ERC(758462)European Union Horizon 2020 research and innovation programme(Marie Sklodowska-Curie grant agreement No 894790)German Research Foundation DFG(443159800)Collaborative Research Center CRC 1044,FOR 2359,FOR 2359,GRK 214Istituto Nazionale di Fisica Nucleare,Italy,Ministry of Development of Turkey(DPT2006K-120470)National Science and Technology fund,Olle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research Council,U.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0012069)。
文摘During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the study of excited charmonium and charmoniumlike states.By analyzing the di-muon process e^(+)e^(-)→(γISR=FSR)μ^(+)μ^(-),we measure the center-of-mass energies of the data samples with a precision of 0.6 MeV.Through a run-by-run study,we find that the center-of-mass energies were stable throughout most of the data-collection period.
基金Supported in part by National Key Basic Research Program of China (2015CB856700)National Natural Science Foundation of China (NSFC) (11335008,11425524, 11625523, 11635010, 11735014, 11822506, 11935018)+18 种基金the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics (CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1532257, U1532258, U1732263)CAS Key Research Program of Frontier Science (QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040)100 Talents Program of CASCAS PIFIthe Thousand Talents Program of ChinaIN-PAC and Shanghai Key Laboratory for Particle Physics and CosmologyGerman Research Foundation DFG under Contracts NosCollaborative Research Center CRC 1044, FOR 2359Istituto Nazionale di Fisica Nucleare, ItalyKoninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03)Ministry of Development of Turkey (DPT2006K-120470)National Science and Technology fundThe Knut and Alice Wallenberg Foundation (Sweden) (2016.0157)The Swedish Research CouncilU. S. Department of Energy (DE-FG02-05ER41374, DESC-0010118, DE-SC-0012069)University of Groningen (Ru G) and the Helmholtzzentrum fuer Schwerionenforschung Gmb H (GSI), Darmstadtthe Russian Ministry of Science and Higher Education (14.W03.31.0026).
文摘There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity.
基金Supported in part by National Key Basic Research Program of China(2015CB856700)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U 1732263,U 1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSWSLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)German Research Foundation DFG under Contracts Nos.Collaborative Research Center CRC 1044,FOR 2359Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development o f Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DEFG02-05ER41374,DE-SC-0012069)。
文摘Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses.
基金Daya Bay is supported in part by the Ministry of Science and Technology o f China, the U.S. Department o f Energy, the Chinese Academy of Sciences, the CASCenter for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government,the China General Nuclear Power Group, Key Laboratory of Particle and Radiation Imaging (Tsinghua University), the Ministry of Education, Key Laboratory ofParticle Physics and Particle Irradiation (Shandong University), the Ministry o f Education, Shanghai Laboratory for Particle Physics and Cosmology, the ResearchGrants Council o f the Hong Kong Special Administrative Region of China, the University Development Fund of the University of Hong Kong, the MOE program forResearch of Excellence at National Taiwan University, National Chiao-Tung University, NSC fund support from Taiwan, the U.S. National Science Foundation, the AlfredP. Sloan Foundation, the Ministry o f Education, Youth, and Sports of the Czech Republic, the Charles University GAUK (284317), the Joint Institute o f NuclearResearch in Dubna, Russia, the National Commission of Scientific and Technological Research of Chile, and the Tsinghua University Initiative Scientific Research Program.
文摘The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows.
基金Supported in part by National Key R&D Program of China(2020YFA0406300, 2020YFA0406400)National Natural Science Foundation of China(NSFC)(11625523, 11635010, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502, 12035009, 12035013,12061131003,12075252)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263, U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union Horizon 2020 research and innovation programme Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(443159800), Collaborative Research Center CRC 1044, FOR 2359, GRK 214Istituto Nazionale di Fisica Nucleare, ItalyMinistry of Development of Turkey under Contract No. DPT2006K-120470National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society, UK(DH140054, DH160214)The Swedish Research CouncilU. S. Department of Energy(DE-FG02-05ER41374, DE-SC-0012069)
文摘Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalculated to be(224.0±1.3)×10^(6) and(1088.5±4.4)×10^(6),respectively;these numbers are in good agreement with the previous measurements. For the J/ψ sample taken in 2017-2019,the number of events was determined to be(8774.0±39.4)×10^(6).The total number of J/ψ events collected with the BESIII detector was determined to be(10087±44)×10^(6),where the uncertainty is dominated by systematic effects,and the statistical uncertainty is negligible.
基金Supported in part by National Key Basic Research Program of China(2015CB856700)National Natural Science Foundation of China(NSFC)(11335008,11425524,11625523,11635010,11735014)+9 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Program,the CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1532257,U1532258,U1732263)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC,Shanghai Key Laboratory for Particle Physics and Cosmology,German Research Foundation DFG under Contracts Nos.Collaborative Research Center CRC 1044,FOR 2359Istituto Nazionale di Fisica Nucleare,Italy,Koninklijke Nederlandse Akademie van Wetenschappen(KNAW)(530-4CDP03)Ministry of Development of Turkey(DPT2006K-120470)National Science and Technology fund,The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0010118,DE-SC-0010504,DE-SC-0012069),University of Groningen(RuG)the Helmholtzzentrum fuer Schwerionenforschung GmbH(GSI),Darmstadt
文摘Studies of e^+e~→D_s^+■^((*)0)K^-and the P-wave charmed-strange mesons are performed based on an e^+e^-collision data sample corresponding to an integrated luminosity of 567 pb^(-1) collected with the BESIII detector at s^(1/2)=4.600 GeV. The processes of e^+e^-→D_s^+■^(*0)K^- and D_s^+■~0K^- are observed for the first time and are found to be dominated by the modes D_s^+D_(s1)(2536)^-and D_s^+D_(s2)~*(2573)^-, respectively. The Born cross sections are measured to be σ~B(e^+e^-→D_s^+■^(*0)K^-) =(10.1±2.3±0.8) pb and σ~B(e^+e^-→D_s^+■~0K^-) =(19.4±2.3± 1.6) pb, and the products of Born cross section and the decay branching fraction are measured to be σ~B(e^+e^-→D_s^+D_(s1)(2536)^-+c.c.)·B(D_(s1)(2536)^-→■^(*0)K^-)=(7.5±1.8±0.7) pb and σ~B(e^+e^-→D_s^+D_(s2)~*(2573)^-+ c.c.)·B(D_(s2)~*(2573)^-→■~0 K^-)=(19.7 ± 2.9 ±2.0) pb. For the D_(s1)(2536)^-and D_(s2)~*(2573)^-mesons, the masses and widths are measured to be M(D_(s1)(2536)^-)=(2537.7±0.5 ±3.1) MeV/c2, Γ(D_(s1)(2536)^-) =(1.7 ±1.2 ±0.6)MeV, and M(D_(s2)~*(2573)^-)=(2570.7±2.0 ±1.7) MeV/c^2, Γ(D_(s2)~*(2573)^-)=(17.2 ±3.6 ±1.1) MeV. The spin-parity of the D_(s2)~*(2573)^-meson is determined to be J^p= 2^+. In addition, the processes e^+e^-→D_s^+■^((*)0)K^-are searched for using the data samples taken at four(two) center-of-mass energies between 4.416(4.527) and 4.575 GeV, and upper limits at the 90% confidence level on the cross sections are determined.
基金Supported in part by National Key R&D Program of China under Contracts Nos.Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(11975118,11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12061131003,12075252,12192260,12192261,12192262,12192263,12192264,12192265)+19 种基金the Natural Science Foundation of Hunan Province of China(2019JJ30019)the Science and Technology Innovation Program of Hunan Province(2020RC3054)the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union Horizon 2020 research and innovation programme under Contract No.Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(43159800)Collaborative Research Center CRC 1044,FOR 2359,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0012069)。
文摘Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),the process e^(+)e^(-)→pppñπ+c.c.is observed for the first time with a statistical significance of 11.5σ.The average Born cross sections in the energy ranges of(4.160,4.380)GeV,(4.400,4.600)GeV and(4.610,4.700)GeV are measured to be(21.5±5.7±1.2)fb,(46.3±10.6±2.5)fb and(59.0±9.4±3.2)fb,respectively,where the first uncertainties are statistical and the second are systematic.The line shapes of the pñ and ppπ^(-)invariant mass spectra are consistent with phase space distributions,indicating that no hexaquark or di-baryon state is observed.