The application of single-phase face-centered cubic(FCC)medium entropy alloys(MEAs)in the engi-neering industry is often hindered by the challenge of insufficient strength.In this study,a novel non-equiatomic ratio Ni...The application of single-phase face-centered cubic(FCC)medium entropy alloys(MEAs)in the engi-neering industry is often hindered by the challenge of insufficient strength.In this study,a novel non-equiatomic ratio Ni_(40)Co_(30)Cr_(20)Al_(5)Ti_(5)MEA was successfully fabricated.Through the well-designed mechan-ical heat treatment processing,we introduced a heterogeneous grain structure comprising 67.4%fine grain and 32.6%coarse grain.Additionally,heterogeneous size L12 phases consisting of 18.7%submicron precip-itates and 11.7%nano-sized precipitates,were incorporated into the alloy.Tensile tests conducted at room temperature revealed that the double heterogeneous structure alloy demonstrated remarkable strength–ductility synergy.It exhibited a yield strength of 1200 MPa,an ultimate tensile strength of 1560 MPa and a total elongation of 33.6%.The exceptional strength of the alloy can be primarily attributed to heteroge-neous deformation induced strengthening,grain boundary strengthening and precipitation strengthening.The excellent ductility is mainly attributed to the high-density stacking faults and Lomer–Cottrell locks.This study not only contributes to the clarification of the strengthening and deformation mechanism of double heterogeneous structure alloys but also provides an effective strategy for the development of high-performance alloys with high strength and ductility.展开更多
Precipitation strengthening provides one of the most widely-used mechanisms for strengthen-ing multi-principal-element alloys(MPEAs).Here,we report dual-morphology B2 precipitates in Co_(36)Cr_(15)Fe_(18)Ni_(18)Al_(8)...Precipitation strengthening provides one of the most widely-used mechanisms for strengthen-ing multi-principal-element alloys(MPEAs).Here,we report dual-morphology B2 precipitates in Co_(36)Cr_(15)Fe_(18)Ni_(18)Al_(8)Ti_(4)Mo_(1)MPEA obtained by thermo-mechanical processing.Electron microscopy charac-terization reveals that the dual-morphology B2 precipitates are either recrystallized B2 particles formed at the grain boundaries or triple junctions with recrystallization process,or rod-like within the non-recrystallized FCC matrix.The dual-morphology B2 precipitates enhance the yield strength and ultimate tensile strength up to 1120 MPa and 1480 MPa,respectively.This work suggests the mechanical proper-ties of the alloy can be optimized by B2 precipitation strengthening to meet the needs of engineering applications.展开更多
It is a promising and new technology to apply welding with trailing peening to control welding stress and distortion of titanium alloy.Numerical simulation of conventional welding and welding with trailing peening of ...It is a promising and new technology to apply welding with trailing peening to control welding stress and distortion of titanium alloy.Numerical simulation of conventional welding and welding with trailing peening of the titanium alloy sheet is carried out,using nonlinear finite element theory and the engineering analysis software MARC.The result shows that welding with trailing peening technology reduces longitudinal residual stress in welding joint effectively,and it is more effective to reduce residual stress to peen the weld than to peen the weld toe.It is a effective result that other technology and method used in welding can never achieved.展开更多
The unstable dimensional distortion of LD31 aluminum alloy weldments at room temperature and after thermal cycles was studied by use of light interference and CMM(three-coordinate measuring machines). At the same time...The unstable dimensional distortion of LD31 aluminum alloy weldments at room temperature and after thermal cycles was studied by use of light interference and CMM(three-coordinate measuring machines). At the same time, distortion mechanism was analyzed from the viewpoint of mechanics and micro structure. Experimental results show that there exists obvious difference of unstable dimensional distortion between LD31 welded specimens under two conditions mentioned above. Under room temperature, dimensional variation of welded specimens will decrease gradually and finally tends to be stable during 200h after welding. The relative elongation of welded specimen is 3.0×10-5; After thermal cycles, distortion of welded specimen is much larger than that at room temperature. After 11 thermal cycles, the dimension will tend to be stable. Dimensional unstable distortion of weldments mainly results from temperature condition, microstructure variation and relaxation of welding residual stress.展开更多
基金supported by the National Key R&D Program of China(No.2022YFA1603800)the National Natural Science Foundation of China(No.12274362)the Central Guidance on Local Science and Technology Development Fund of Hebei Province(No.216Z1012G)。
文摘The application of single-phase face-centered cubic(FCC)medium entropy alloys(MEAs)in the engi-neering industry is often hindered by the challenge of insufficient strength.In this study,a novel non-equiatomic ratio Ni_(40)Co_(30)Cr_(20)Al_(5)Ti_(5)MEA was successfully fabricated.Through the well-designed mechan-ical heat treatment processing,we introduced a heterogeneous grain structure comprising 67.4%fine grain and 32.6%coarse grain.Additionally,heterogeneous size L12 phases consisting of 18.7%submicron precip-itates and 11.7%nano-sized precipitates,were incorporated into the alloy.Tensile tests conducted at room temperature revealed that the double heterogeneous structure alloy demonstrated remarkable strength–ductility synergy.It exhibited a yield strength of 1200 MPa,an ultimate tensile strength of 1560 MPa and a total elongation of 33.6%.The exceptional strength of the alloy can be primarily attributed to heteroge-neous deformation induced strengthening,grain boundary strengthening and precipitation strengthening.The excellent ductility is mainly attributed to the high-density stacking faults and Lomer–Cottrell locks.This study not only contributes to the clarification of the strengthening and deformation mechanism of double heterogeneous structure alloys but also provides an effective strategy for the development of high-performance alloys with high strength and ductility.
基金supported by the Central Guidance on Local Science and Technology Development Fund of Hebei Province(No.216Z1012G)the National Natural Science Foundation of China(No.12174274).
文摘Precipitation strengthening provides one of the most widely-used mechanisms for strengthen-ing multi-principal-element alloys(MPEAs).Here,we report dual-morphology B2 precipitates in Co_(36)Cr_(15)Fe_(18)Ni_(18)Al_(8)Ti_(4)Mo_(1)MPEA obtained by thermo-mechanical processing.Electron microscopy charac-terization reveals that the dual-morphology B2 precipitates are either recrystallized B2 particles formed at the grain boundaries or triple junctions with recrystallization process,or rod-like within the non-recrystallized FCC matrix.The dual-morphology B2 precipitates enhance the yield strength and ultimate tensile strength up to 1120 MPa and 1480 MPa,respectively.This work suggests the mechanical proper-ties of the alloy can be optimized by B2 precipitation strengthening to meet the needs of engineering applications.
文摘It is a promising and new technology to apply welding with trailing peening to control welding stress and distortion of titanium alloy.Numerical simulation of conventional welding and welding with trailing peening of the titanium alloy sheet is carried out,using nonlinear finite element theory and the engineering analysis software MARC.The result shows that welding with trailing peening technology reduces longitudinal residual stress in welding joint effectively,and it is more effective to reduce residual stress to peen the weld than to peen the weld toe.It is a effective result that other technology and method used in welding can never achieved.
文摘The unstable dimensional distortion of LD31 aluminum alloy weldments at room temperature and after thermal cycles was studied by use of light interference and CMM(three-coordinate measuring machines). At the same time, distortion mechanism was analyzed from the viewpoint of mechanics and micro structure. Experimental results show that there exists obvious difference of unstable dimensional distortion between LD31 welded specimens under two conditions mentioned above. Under room temperature, dimensional variation of welded specimens will decrease gradually and finally tends to be stable during 200h after welding. The relative elongation of welded specimen is 3.0×10-5; After thermal cycles, distortion of welded specimen is much larger than that at room temperature. After 11 thermal cycles, the dimension will tend to be stable. Dimensional unstable distortion of weldments mainly results from temperature condition, microstructure variation and relaxation of welding residual stress.