期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Methods for a blind analysis of isobar data collected by the STAR collaboration 被引量:9
1
作者 J.Adam L.Adamczyk +366 位作者 J.R.Adams J.K.Adkins G.Agakishiev M.M.Aggarwal Z.Ahammed I.Alekseev D.M.Anderson A.Aparin E.C.Aschenauer M.U.Ashraf F.G.Atetalla A.Attri G.S.Averichev V.Bairathi K.Barish A.Behera R.Bellwied A.Bhasin J.Bielcik J.Bielcikova L.C.Bland I.G.Bordyuzhin J.D.Brandenburg A.V.Brandin J.Butterworth H.Caines M.Calderon de la Barca Sanchez D.Cebra I.Chakaberia P.Chaloupka B.K.Chan F-H.Chang Z.Chang N.Chankova-Bunzarova A.Chatterjee D.Chen J.Chen J.H.Chen X.Chen Z.Chen J.Cheng M.Cherney M.Chevalier S.Choudhury W.Christie X.Chu H.J.Crawford M.Csanad M.Daugherity T.G.Dedovich I.M.Deppner A.A.Derevschikov L.Didenko X.Dong J.L.Drachenberg J.C.Dunlop T.Edmonds N.Elsey J.Engelage G.Eppley S.Esumi O.Evdokimov A.Ewigleben O.Eyser R.Fatemi S.Fazio P.Federic J.Fedorisin C.J.Feng Y.Feng P.Filip E.Finch Y.Fisyak A.Francisco L.Fulek C.A.Gagliardi T.Galatyuk F.Geurts A.Gibson K.Gopal X.Gou D.Grosnick W.Guryn A.I.Hamad A.Hamed S.Harabasz J.W.Harris S.He W.He X.H.He Y.He S.Heppelmann S.Heppelmann N.Herrmann E.Hoffman L.Holub Y.Hong S.Horvat Y.Hu H.Z.Huang S.L.Huang T.Huang X.Huang T.J.Humanic P.Huo G.Igo D.Isenhower W.W.Jacobs C.Jena A.Jentsch Y.Ji J.Jia K.Jiang S.Jowzaee X.Ju E.G.Judd S.Kabana M.L.Kabir S.Kagamaster D.Kalinkin K.Kang D.Kapukchyan K.Kauder H.W.Ke D.Keane A.Kechechyan M.Kelsey Y.V.Khyzhniak D.P.Kikoła C.Kim B.Kimelman D.Kincses T.A.Kinghorn I.Kisel A.Kiselev M.Kocan L.Kochenda L.K.Kosarzewski L.Kramarik P.Kravtsov K.Krueger N.Kulathunga Mudiyanselage L.Kumar S.Kumar R.Kunnawalkam Elayavalli J.H.Kwasizur R.Lacey S.Lan J.M.Landgraf J.Lauret A.Lebedev R.Lednicky J.H.Lee Y.H.Leung C.Li C.Li W.Li W.Li X.Li Y.Li Y.Liang R.Licenik T.Lin Y.Lin M.A.Lisa F.Liu H.Liu P.Liu P.Liu T.Liu X.Liu Y.Liu Z.Liu T.Ljubicic W.J.Llope R.S.Longacre N.S.Lukow S.Luo X.Luo G.L.Ma L.Ma R.Ma Y.G.Ma N.Magdy R.Majka D.Mallick S.Margetis C.Markert H.S.Matis J.A.Mazer N.G.Minaev S.Mioduszewski B.Mohanty I.Mooney Z.Moravcova D.A.Morozov M.Nagy J.D.Nam Md.Nasim K.Nayak D.Neff J.M.Nelson D.B.Nemes M.Nie G.Nigmatkulov T.Niida L.V.Nogach T.Nonaka A.S.Nunes G.Odyniec A.Ogawa S.Oh V.A.Okorokov B.S.Page R.Pak A.Pandav Y.Panebratsev B.Pawlik D.Pawlowska H.Pei C.Perkins L.Pinsky R.L.Pinter J.Pluta J.Porter M.Posik N.K.Pruthi M.Przybycien J.Putschke H.Qiu A.Quintero S.K.Radhakrishnan S.Ramachandran R.L.Ray R.Reed H.G.Ritter O.V.Rogachevskiy J.L.Romero L.Ruan J.Rusnak N.R.Sahoo H.Sako S.Salur J.Sandweiss S.Sato W.B.Schmidke N.Schmitz B.R.Schweid F.Seck J.Seger M.Sergeeva R.Seto P.Seyboth N.Shah E.Shahaliev P.V.Shanmuganathan M.Shao A.I.Sheikh W.Q.Shen S.S.Shi Y.Shi Q.Y.Shou E.P.Sichtermann R.Sikora M.Simko J.Singh S.Singha N.Smirnov W.Solyst P.Sorensen H.M.Spinka B.Srivastava T.D.S.Stanislaus M.Stefaniak D.J.Stewart M.Strikhanov B.Stringfellow A.A.P.Suaide M.Sumbera B.Summa X.M.Sun X.Sun Y.Sun Y.Sun B.Surrow D.N.Svirida P.Szymanski A.H.Tang Z.Tang A.Taranenko T.Tarnowsky J.H.Thomas A.R.Timmins D.Tlusty M.Tokarev C.A.Tomkiel S.Trentalange R.E.Tribble P.Tribedy S.K.Tripathy O.D.Tsai Z.Tu T.Ullrich D.G.Underwood I.Upsal G.Van Buren J.Vanek A.N.Vasiliev I.Vassiliev F.Videbæk S.Vokal S.A.Voloshin F.Wang G.Wang J.S.Wang P.Wang Y.Wang Y.Wang Z.Wang J.C.Webb P.C.Weidenkaff L.Wen G.D.Westfall H.Wieman S.W.Wissink R.Witt Y.Wu Z.G.Xiao G.Xie W.Xie H.Xu N.Xu Q.H.Xu Y.F.Xu Y.Xu Z.Xu Z.Xu C.Yang Q.Yang S.Yang Y.Yang Z.Yang Z.Ye Z.Ye L.Yi K.Yip Y.Yu H.Zbroszczyk W.Zha C.Zhang D.Zhang S.Zhang S.Zhang x.p.zhang Y.Zhang Y.Zhang Z.J.Zhang Z.Zhang Z.Zhang J.Zhao C.Zhong C.Zhou X.Zhu Z.Zhu M.Zurek M.Zyzak STAR Collaboration Abilene 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第5期43-50,共8页
In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar ... In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar collision species alternated frequently between 9644 Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr.In order to conduct blind analyses of studies related to the chiral magnetic effect in these isobar data,STAR developed a three-step blind analysis procedure.Analysts are initially provided a"reference sample"of data,comprised of a mix of events from the two species,the order of which respects time-dependent changes in run conditions.After tuning analysis codes and performing time-dependent quality assurance on the reference sample,analysts are provided a species-blind sample suitable for calculating efficiencies and corrections for individual≈30-min data-taking runs.For this sample,species-specific information is disguised,but individual output files contain data from a single isobar species.Only run-by-run corrections and code alteration subsequent to these corrections are allowed at this stage.Following these modifications,the"frozen"code is passed over the fully un-blind data,completing the blind analysis.As a check of the feasibility of the blind analysis procedure,analysts completed a"mock data challenge,"analyzing data from Au+Au collisions at√^(S)NN=27 Ge V,collected in 2018.The Au+Au data were prepared in the same manner intended for the isobar blind data.The details of the blind analysis procedure and results from the mock data challenge are presented. 展开更多
关键词 Blind analysis Chiral magnetic effect Heavy-ion collisions
在线阅读 下载PDF
GO/MgO/Mg interface mediated strengthening and electromagnetic interference shielding in AZ31 composite 被引量:3
2
作者 Z.Y.Xu C.F.Fang +4 位作者 C.J.Li R.Wang x.p.zhang J.Tan Y.M.Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3800-3814,共15页
More requirements of electromagnetic interference(EMI) shielding performance are put forward for lightweight structural materials due to the development of aerospace and 5G communications. Herein, graphene oxide(GO) d... More requirements of electromagnetic interference(EMI) shielding performance are put forward for lightweight structural materials due to the development of aerospace and 5G communications. Herein, graphene oxide(GO) decorated with SnO_(2) coating is introduced as reinforcement into AZ31 Mg alloy. During the smelting process, the MgO layer is in situ gernerated at interface between GO and the molten Mg alloy matrix by consuming SnO_(2). In the solid state, such kind of interface structure can improve the GO-Mg interface bonding intensity,also significantly generate stacking faults. The AZ31 composite reinfoced by trace modified GO(0.1 wt%) exhibits high ultimate strength and almost the same elongation with AZ31 alloy. Compared with AZ31 alloy, the yield strength and ultimate tensile strength of composite are increased by 33.5% and 23.7%, respectively. Meanwhile, the multi-level electromagnetic reflection from the multi-layer structure of GO and the interface polarization caused by the MgO mid-layer can significantly improve EMI shielding performance. The appropriate interface design strategy achieves the effect of “two birds with one stone”. 展开更多
关键词 Metal-matrix composites Mechanical properties EMI shielding MICROSTRUCTURES
在线阅读 下载PDF
Reducing the anisotropy of a Brazilian disc generated in a bonded-particle model 被引量:1
3
作者 Q.Zhang x.p.zhang P.Q.Ji 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第4期716-727,共12页
The Brazilian test is a widely used method for determining the tensile strength of rocks and for calibrating parameters in bondedparticle models(BPMs). In previous studies, the Brazilian disc has typically been trim... The Brazilian test is a widely used method for determining the tensile strength of rocks and for calibrating parameters in bondedparticle models(BPMs). In previous studies, the Brazilian disc has typically been trimmed from a compacted rectangular specimen. The present study shows that different tensile strength values are obtained depending on the compressive loading direction. Several measures are proposed to reduce the anisotropy of the disc. The results reveal that the anisotropy of the disc is significantly influenced by the compactibility of the specimen from which it is trimmed. A new method is proposed in which the Brazilian disc is directly generated with a particle boundary, effectively reducing the anisotropy. The stiffness(particle and bond) and strength(bond) of the boundary are set at less than and greater than those of the disc assembly, respectively,which significantly decreases the stress concentration at the boundary contacts and prevents breakage of the boundary particle bonds. This leads to a significant reduction in the anisotropy of the disc and the discreteness of the tensile strength. This method is more suitable for carrying out a realistic Brazilian test for homogeneous rock-like material in the BPM. 展开更多
关键词 Bonded-particle model Brazilian disc ANISOTROPY COMPACTIBILITY Particle boundary
在线阅读 下载PDF
Terahertz Generation Using Implanted InGaAs Photomixers and Multi-wavelength Quantum Dot Lasers 被引量:1
4
作者 Y.Hou J.R.Liu +6 位作者 M.Buchanan A.J.Spring Thorpe P.J.Poole H.C.Liu Ke Wu Sjoerd Roorda x.p.zhang 《Nano-Micro Letters》 SCIE EI CAS 2012年第1期10-13,共4页
We report on a study of terahertz(THz) generation using implanted In Ga As photomixers and multi-wavelength quantum dot lasers. We carry out In Ga As materials growth, optical characterization, device design and fabri... We report on a study of terahertz(THz) generation using implanted In Ga As photomixers and multi-wavelength quantum dot lasers. We carry out In Ga As materials growth, optical characterization, device design and fabrication, and photomixing experiments. This approach is capable of generating a comb of electromagnetic radiation from microwave to terahertz. For shortening photomixer carrier lifetime, we employ proton implantation into an epitaxial layer of lattice matched In Ga As grown on InP. Under a 1.55 μm multimode In GaAs/In GaAsP quantum dot laser excitation, a frequency comb with a constant frequency spacing of 50 GHz generated on the photomixer is measured, which corresponds to the beats of the laser longitudinal modes. The measurement is performed with a Fourier transform infrared spectrometer. This approach affords a convenient method to achieve a broadband multi-peak coherent THz source. 展开更多
关键词 Proton implanted In Ga As Trahertz Photomixer Multi-wavelength quantum dot laser Fourier transform infrared spectroscopy
在线阅读 下载PDF
Observation of theγ-ray emission from W43 with LHAASO
5
作者 Zhen Cao F.A.haronian +296 位作者 Axikegu Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi W.Bian A.V.Bukevich Q.Cao W.Y.Cao Zhe Cao J.Chang J.F.Chang A.M.Chen E.S.Chen H.X.Chen Liang Chen Lin Chen Long Chen M.J.Chen M.L.Chen Q.H.Chen S.Chen S.H.Chen S.Z.Chen T.L.Chen Y.Chen N.Cheng Y.D.Cheng M.C.Chu M.Y.Cui S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu X.Q.Dong K.K.Duan J.H.Fan Y.Z.Fan J.Fang J.H.Fang K.Fang C.F.Feng H.Feng L.Feng S.H.Feng X.T.Feng Y.Feng Y.L.Feng S.Gabici B.Gao C.D.Gao Q.Gao W.Gao W.K.Gao M.M.Ge T.T.Ge L.S.Geng G.Giacinti G.H.Gong Q.B.Gou M.H.Gu F.L.Guo J.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han O.A.Hannuksela M.Hasan H.H.He H.N.He J.Y.He Y.He Y.K.Hor B.W.Hou C.Hou X.Hou H.B.Hu Q.Hu S.C.Hu C.Huang D.H.Huang T.Q.Huang W.J.Huang X.T.Huang X.Y.Huang Y.Huang Y.Y.Huang X.L.Ji H.Y.Jia K.Jia H.B.Jiang K.Jiang X.W.Jiang Z.J.Jiang M.Jin M.M.Kang I.Karpikov D.K.hangulyan D.Kuleshov K.Kurinov B.B.Li C.M.Li Cheng Li Cong Li D.Li F.Li H.B.Li H.C.Li Jian Li Jie Li K.Li S.D.Li W.L.Li W.L.Li X.R.Li Xin Li Y.Z.Li Zhe Li Zhuo Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu D.B.Liu H.Liu H.D.Liu J.Liu J.L.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.Liu Y.N.Liu Q.Luo Y.Luo H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao Z.Min W.Mitthumsiri H.J.Mu Y.C.Nan A.Neronov K.C.Y.Ng L.J.Ou P.Pattarakijwanich Z.Y.Pei J.C.Qi M.Y.Qi B.Q.Qiao J.J.Qin A.Raza D.Ruffolo A.Saiz´ M.Saeed D.Semikoz L.Shao O.Shchegolev X.D.Sheng F.W.Shu H.C.Song Yu V.Stenkin V.Stepanov Y.Su D.X.Sun Q.N.Sun X.N.Sun Z.B.Sun J.Takata P.H.T.Tam Q.W.Tang R.Tang Z.B.Tang W.W.Tian L.H.Wan C.Wang C.B.Wang G.W.Wang H.G.Wang H.H.Wang J.C.Wang Kai Wang Kai Wang L.P.Wang L.Y.Wang P.H.Wang R.Wang W.Wang X.G.Wang X.Y.Wang Y.Wang Y.D.Wang Y.J.Wang Z.H.Wang Z.X.Wang Zhen Wang Zheng Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu Q.W.Wu S.Wu X.F.Wu Y.S.Wu S.Q.Xi J.Xia G.M.Xiang D.X.Xiao G.Xiao Y.L.Xin Y.Xing D.R.Xiong Z.Xiong D.L.Xu R.F.Xu R.X.Xu W.L.Xu L.Xue D.H.Yan J.Z.Yan T.Yan C.W.Yang C.Y.Yang F.Yang F.F.Yang L.L.Yang M.J.Yang R.Z.Yang W.X.Yang Y.H.Yao Z.G.Yao L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.Yue H.D.Zeng T.X.Zeng W.Zeng M.Zha B.B.Zhang F.Zhang H.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang Li Zhang P.F.Zhang P.P.Zhang R.Zhang S.B.Zhang S.R.Zhang S.S.Zhang X.Zhang x.p.zhang Y.F.Zhang Yi Zhang Yong Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao X.H.Zhao F.Zheng W.J.Zhong B.Zhou H.Zhou J.N.Zhou M.Zhou P.Zhou R.Zhou X.X.Zhou X.X.Zhou B.Y.Zhu C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu Y.C.Zou X.Zuo The LHAASO Collaboration 《Science China(Physics,Mechanics & Astronomy)》 2025年第7期2-12,共11页
In this paper,we report the detection of the very-high-energy(VHE,100 GeV<E<100 TeV)and ultra-high-energy(UHE,E>100 TeV)y-ray emissions from the direction of the young star-forming region W43,observed by the ... In this paper,we report the detection of the very-high-energy(VHE,100 GeV<E<100 TeV)and ultra-high-energy(UHE,E>100 TeV)y-ray emissions from the direction of the young star-forming region W43,observed by the Large High Altitude Air Shower Observation(LHAASO).The extendedγ-ray source was detected with a significance of~16σby KM2A and~17σby WCDA,respectively.The angular extension of this y-ray source is about 0.5 degrees,corresponding to a physical size of about 50pc.We discuss the origin of theγ-ray emission and possible cosmic ray acceleration in the W43 region using multi-wavelength data.Our findings suggest that W43 is likely another young star cluster capable of accelerating cosmic rays(CRs)to at least several hundred TeV. 展开更多
关键词 large high altitude air shower observation lhaaso gamma ray emission cosmic ray acceleration multi wavelength data ultra high energy gamma rays W star forming region very high energy gamma rays
原文传递
LHAASO detection of very-high-energyγ-ray emission surrounding PSR J0248+6021
6
作者 Zhen Cao F.A.haronian +296 位作者 Axikegu Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi W.Bian A.V.Bukevich Q.Cao W.Y.Cao Zhe Cao J.Chang J.F.Chang A.M.Chen E.S.Chen H.X.Chen Liang Chen Lin Chen Long Chen M.J.Chen M.L.Chen Q.H.Chen S.Chen S.H.Chen S.Z.Chen T.L.Chen Y.Chen N.Cheng Y.D.Cheng M.C.Chu M.Y.Cui S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu X.Q.Dong K.K.Duan J.H.Fan Y.Z.Fan J.Fang J.H.Fang K.Fang C.F.Feng H.Feng L.Feng S.H.Feng X.T.Feng Y.Feng Y.L.Feng S.Gabici B.Gao C.D.Gao Q.Gao W.Gao W.K.Gao M.M.Ge T.T.Ge L.S.Geng G.Giacinti G.H.Gong Q.B.Gou M.H.Gu F.L.Guo J.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han O.A.Hannuksela M.Hasan H.H.He H.N.He J.Y.He Y.He Y.K.Hor B.W.Hou C.Hou X.Hou H.B.Hu Q.Hu S.C.Hu C.Huang D.H.Huang T.Q.Huang W.J.Huang X.T.Huang X.Y.Huang Y.Huang Y.Y.Huang X.L.Ji H.Y.Jia K.Jia H.B.Jiang K.Jiang X.W.Jiang Z.J.Jiang M.Jin M.M.Kang I.Karpikov D.K.hangulyan D.Kuleshov K.Kurinov B.B.Li C.M.Li Cheng Li Cong Li D.Li F.Li H.B.Li H.C.Li Jian Li Jie Li K.Li S.D.Li W.L.Li W.L.Li X.R.Li Xin Li Y.Z.Li Zhe Li Zhuo Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu D.B.Liu H.Liu H.D.Liu J.Liu J.L.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.Liu Y.N.Liu Q.Luo Y.Luo H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao Z.Min W.Mitthumsiri H.J.Mu Y.C.Nan A.Neronov K.C.Y.Ng L.J.Ou P.Pattarakijwanich Z.Y.Pei J.C.Qi M.Y.Qi B.Q.Qiao J.J.Qin A.Raza D.Ruffolo A.Saiz´ M.Saeed D.Semikoz L.Shao O.Shchegolev X.D.Sheng F.W.Shu H.C.Song Yu V.Stenkin V.Stepanov Y.Su D.X.Sun Q.N.Sun X.N.Sun Z.B.Sun J.Takata P.H.T.Tam Q.W.Tang R.Tang Z.B.Tang W.W.Tian L.H.Wan C.Wang C.B.Wang G.W.Wang H.G.Wang H.H.Wang J.C.Wang Kai Wang Kai Wang L.P.Wang L.Y.Wang P.H.Wang R.Wang W.Wang X.G.Wang X.Y.Wang Y.Wang Y.D.Wang Y.J.Wang Z.H.Wang Z.X.Wang Zhen Wang Zheng Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu Q.W.Wu S.Wu X.F.Wu Y.S.Wu S.Q.Xi J.Xia G.M.Xiang D.X.Xiao G.Xiao Y.L.Xin Y.Xing D.R.Xiong Z.Xiong D.L.Xu R.F.Xu R.X.Xu W.L.Xu L.Xue D.H.Yan J.Z.Yan T.Yan C.W.Yang C.Y.Yang F.Yang F.F.Yang L.L.Yang M.J.Yang R.Z.Yang W.X.Yang Y.H.Yao Z.G.Yao L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.Yue H.D.Zeng T.X.Zeng W.Zeng M.Zha B.B.Zhang F.Zhang H.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang Li Zhang P.F.Zhang P.P.Zhang R.Zhang S.B.Zhang S.R.Zhang S.S.Zhang X.Zhang x.p.zhang Y.F.Zhang Yi Zhang Yong Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao X.H.Zhao F.Zheng W.J.Zhong B.Zhou H.Zhou J.N.Zhou M.Zhou P.Zhou R.Zhou X.X.Zhou X.X.Zhou B.Y.Zhu C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu Y.C.Zou X.Zuo The LHAASO Collaboration 《Science China(Physics,Mechanics & Astronomy)》 2025年第7期27-37,共11页
We report the detection of an extended very-high-energy(VHE)γ-ray source coincident with the location of middle-aged(62.4 kyr)pulsar PSR J0248+6021,by using the LHAASO-WCDA data of live 796 d and LHAASO-KM2A data of ... We report the detection of an extended very-high-energy(VHE)γ-ray source coincident with the location of middle-aged(62.4 kyr)pulsar PSR J0248+6021,by using the LHAASO-WCDA data of live 796 d and LHAASO-KM2A data of live 1216d.A significant excess of y-ray induced showers is observed both by WCDA in energy bands of 1-25 TeV and KM2A in energy bands of>25 TeV with 7.3σand 13.5σ,respectively.The best-fit position derived through WCDA data is R.A.=42.06°±0.12°and Dec.=60.24°±0.13°with an extension of 0.69°±0.15°and that of the KM2A data is R.A.=42.29°±0.13°and Dec.=60.38°±0.07°with an extension of 0.37°±0.07°.No clear extended multiwavelength counterpart of this LHAASO source has been found from the radio band to the GeV band.The most plausible explanation of the VHEγ-ray emission is the inverse Compton process of highly relativistic electrons and positrons injected by the pulsar.These electrons/positrons are hypothesized to be either confined within the pulsar wind nebula or to have already escaped into the interstellar medium,forming a pulsar halo. 展开更多
关键词 γ-rays PULSARS individual PSR J0248+6021 interstellar medium(ISM) NEBULAE
原文传递
Study of ultra-high-energy gamma-ray source 1LHAASO J0056+6346u and its possible origins
7
作者 Zhen Cao F.A.haronian +296 位作者 Axikegu Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi W.Bian A.V.Bukevich Q.Cao W.Y.Cao Zhe Cao J.Chang J.F.Chang A.M.Chen E.S.Chen H.X.Chen Liang Chen Lin Chen Long Chen M.J.Chen M.L.Chen Q.H.Chen S.Chen S.H.Chen S.Z.Chen T.L.Chen Y.Chen N.Cheng Y.D.Cheng M.C.Chu M.Y.Cui S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu X.Q.Dong K.K.Duan J.H.Fan Y.Z.Fan J.Fang J.H.Fang K.Fang C.F.Feng H.Feng L.Feng S.H.Feng X.T.Feng Y.Feng Y.L.Feng S.Gabici B.Gao C.D.Gao Q.Gao W.Gao W.K.Gao M.M.Ge T.T.Ge L.S.Geng G.Giacinti G.H.Gong Q.B.Gou M.H.Gu F.L.Guo J.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han O.A.Hannuksela M.Hasan H.H.He H.N.He J.Y.He Y.He Y.K.Hor B.W.Hou C.Hou X.Hou H.B.Hu Q.Hu S.C.Hu C.Huang D.H.Huang T.Q.Huang W.J.Huang X.T.Huang X.Y.Huang Y.Huang Y.Y.Huang X.L.Ji H.Y.Jia K.Jia H.B.Jiang K.Jiang X.W.Jiang Z.J.Jiang M.Jin M.M.Kang I.Karpikov D.K.hangulyan D.Kuleshov K.Kurinov B.B.Li C.M.Li Cheng Li Cong Li D.Li F.Li H.B.Li H.C.Li Jian Li Jie Li K.Li S.D.Li W.L.Li W.L.Li X.R.Li Xin Li Y.Z.Li Zhe Li Zhuo Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu D.B.Liu H.Liu H.D.Liu J.Liu J.L.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.Liu Y.N.Liu Q.Luo Y.Luo H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao Z.Min W.Mitthumsiri H.J.Mu Y.C.Nan A.Neronov K.C.Y.Ng L.J.Ou P.Pattarakijwanich Z.Y.Pei J.C.Qi M.Y.Qi B.Q.Qiao J.J.Qin A.Raza D.Ruffolo A.Saiz´ M.Saeed D.Semikoz L.Shao O.Shchegolev X.D.Sheng F.W.Shu H.C.Song Yu V.Stenkin V.Stepanov Y.Su D.X.Sun Q.N.Sun X.N.Sun Z.B.Sun J.Takata P.H.T.Tam Q.W.Tang R.Tang Z.B.Tang W.W.Tian L.H.Wan C.Wang C.B.Wang G.W.Wang H.G.Wang H.H.Wang J.C.Wang Kai Wang Kai Wang L.P.Wang L.Y.Wang P.H.Wang R.Wang W.Wang X.G.Wang X.Y.Wang Y.Wang Y.D.Wang Y.J.Wang Z.H.Wang Z.X.Wang Zhen Wang Zheng Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu Q.W.Wu S.Wu X.F.Wu Y.S.Wu S.Q.Xi J.Xia G.M.Xiang D.X.Xiao G.Xiao Y.L.Xin Y.Xing D.R.Xiong Z.Xiong D.L.Xu R.F.Xu R.X.Xu W.L.Xu L.Xue D.H.Yan J.Z.Yan T.Yan C.W.Yang C.Y.Yang F.Yang F.F.Yang L.L.Yang M.J.Yang R.Z.Yang W.X.Yang Y.H.Yao Z.G.Yao L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.Yue H.D.Zeng T.X.Zeng W.Zeng M.Zha B.B.Zhang F.Zhang H.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang Li Zhang P.F.Zhang P.P.Zhang R.Zhang S.B.Zhang S.R.Zhang S.S.Zhang X.Zhang x.p.zhang Y.F.Zhang Yi Zhang Yong Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao X.H.Zhao F.Zheng W.J.Zhong B.Zhou H.Zhou J.N.Zhou M.Zhou P.Zhou R.Zhou X.X.Zhou X.X.Zhou B.Y.Zhu C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu Y.C.Zou X.Zuo The LHAASO Collaboration 《Science China(Physics,Mechanics & Astronomy)》 2025年第7期38-50,共13页
We report a dedicated study of the newly discovered extended UHEγ-ray source 1LHAASO J0056+6346u.Analyzing 979 d of LHAASO-WCDA data and 1389 d of LHAASO-KM2A data,we observed a significant excess ofγ-ray events wit... We report a dedicated study of the newly discovered extended UHEγ-ray source 1LHAASO J0056+6346u.Analyzing 979 d of LHAASO-WCDA data and 1389 d of LHAASO-KM2A data,we observed a significant excess ofγ-ray events with both WCDA and KM2A.Assuming a point power-law source with a fixed spectral index,the significance maps reveal excesses of 12.65σ,22.18σ,and 10.24σin the energy ranges of 1-25,25-100,and>100 TeV,respectively.We use a 3D likelihood algorithm to derive the morphological and spectral parameters,and the source is detected with significances of 13.72σby WCDA and 25.27σby KM2A.The best-fit positions derived from WCDA and KM2A data are(R.A.=13.96°±0.09°,Decl.=63.92°±0.05°)and(R.A.=14.00°±0.05°,Decl.=63.79°±0.02°),respectively.The angular size(r_(39))of 1LHAASO J0056+6346u is 0.34°±0.04°at 1-25 TeV and 0.24°±0.02°at>25 TeV.The differential flux of this UHEγ-ray source can be described by an exponential cutoff power-law function:(2.67±0.25)×10^(-15)(E/20 TeV)^((-1.97±0.10))e^(-E/(55.1±7.2)TeV)TeV^(-1)cm^(-2)s^(-1).To explore potential sources ofγ-ray emission,we investigated the gas distribution around 1LHAASO J0056+6346u.1LHAASO J0056+6346u is likely to be a TeV PWN powered by an unknown pulsar,which would naturally explain both its spatial and spectral properties.Another explanation is that this UHEγ-ray source might be associated with gas content illuminated by a nearby CR accelerator,possibly the SNR candidate G124.0+1.4. 展开更多
关键词 gamma rays cosmic rays supernova remnant young massive cluster pulsar
原文传递
Deep view of composite SNR CTA1 with LHAASO inγ-rays up to 300 TeV
8
作者 Zhen Cao F.A.haronian +297 位作者 Axikegu Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi W.Bian A.V.Bukevich Q.Cao W.Y.Cao Zhe Cao J.Chang J.F.Chang A.M.Chen E.S.Chen H.X.Chen Liang Chen Lin Chen Long Chen M.J.Chen M.L.Chen Q.H.Chen S.Chen S.H.Chen S.Z.Chen T.L.Chen Y.Chen N.Cheng Y.D.Cheng M.C.Chu M.Y.Cui S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu X.Q.Dong K.K.Duan J.H.Fan Y.Z.Fan J.Fang J.H.Fang K.Fang C.F.Feng H.Feng L.Feng S.H.Feng X.T.Feng Y.Feng Y.L.Feng S.Gabici B.Gao C.D.Gao Q.Gao W.Gao W.K.Gao M.M.Ge T.T.Ge L.S.Geng G.Giacinti G.H.Gong Q.B.Gou M.H.Gu F.L.Guo J.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han O.A.Hannuksela M.Hasan H.H.He H.N.He J.Y.He Y.He Y.K.Hor B.W.Hou C.Hou X.Hou H.B.Hu Q.Hu S.C.Hu C.Huang D.H.Huang T.Q.Huang W.J.Huang X.T.Huang X.Y.Huang Y.Huang Y.Y.Huang X.L.Ji H.Y.Jia K.Jia H.B.Jiang K.Jiang X.W.Jiang Z.J.Jiang M.Jin M.M.Kang I.Karpikov D.K.hangulyan D.Kuleshov K.Kurinov B.B.Li C.M.Li Cheng Li Cong Li D.Li F.Li H.B.Li H.C.Li Jian Li Jie Li K.Li S.D.Li W.L.Li W.L.Li X.R.Li Xin Li Y.Z.Li Zhe Li Zhuo Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu D.B.Liu H.Liu H.D.Liu J.Liu J.L.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.Liu Y.N.Liu Q.Luo Y.Luo H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao Z.Min W.Mitthumsiri H.J.Mu Y.C.Nan A.Neronov K.C.Y.Ng L.J.Ou P.Pattarakijwanich Z.Y.Pei J.C.Qi M.Y.Qi B.Q.Qiao J.J.Qin A.Raza D.Ruffolo A.Saiz´ M.Saeed D.Semikoz L.Shao O.Shchegolev X.D.Sheng F.W.Shu H.C.Song Yu V.Stenkin V.Stepanov Y.Su D.X.Sun Q.N.Sun X.N.Sun Z.B.Sun J.Takata P.H.T.Tam Q.W.Tang R.Tang Z.B.Tang W.W.Tian L.H.Wan C.Wang C.B.Wang G.W.Wang H.G.Wang H.H.Wang J.C.Wang Kai Wang Kai Wang L.P.Wang L.Y.Wang P.H.Wang R.Wang W.Wang X.G.Wang X.Y.Wang Y.Wang Y.D.Wang Y.J.Wang Z.H.Wang Z.X.Wang Zhen Wang Zheng Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu Q.W.Wu S.Wu X.F.Wu Y.S.Wu S.Q.Xi J.Xia G.M.Xiang D.X.Xiao G.Xiao Y.L.Xin Y.Xing D.R.Xiong Z.Xiong D.L.Xu R.F.Xu R.X.Xu W.L.Xu L.Xue D.H.Yan J.Z.Yan T.Yan C.W.Yang C.Y.Yang F.Yang F.F.Yang L.L.Yang M.J.Yang R.Z.Yang W.X.Yang Y.H.Yao Z.G.Yao L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.Yue H.D.Zeng T.X.Zeng W.Zeng M.Zha B.B.Zhang F.Zhang H.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang Li Zhang P.F.Zhang P.P.Zhang R.Zhang S.B.Zhang S.R.Zhang S.S.Zhang X.Zhang x.p.zhang Y.F.Zhang Yi Zhang Yong Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao X.H.Zhao F.Zheng W.J.Zhong B.Zhou H.Zhou J.N.Zhou M.Zhou P.Zhou R.Zhou X.X.Zhou X.X.Zhou B.Y.Zhu C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu Y.C.Zou X.Zuo B.Li The LHAASO Collaboration 《Science China(Physics,Mechanics & Astronomy)》 2025年第7期13-26,共14页
The ultra-high-energy(UHE)gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude b≈10.5°.This provides a rare opportunity to spatial... The ultra-high-energy(UHE)gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude b≈10.5°.This provides a rare opportunity to spatially resolve the component of the pulsar wind nebula(PWN)and supernova remnant(SNR)at UHE.This paper conducted a dedicated data analysis of 1LHAASO J0007+7303u using the data collected from December 2019 to July 2023.This source is well detected with significances of 21σand 17σat 8-100 TeV and>100 TeV,respectively.The corresponding extensions are determined to be 0.23°±0.03°and 0.17°±0.03°.The emission is proposed to originate from the relativistic electrons accelerated within the PWN of PSR J0007+7303.The energy spectrum is well described by a power-law with an exponential cutoff function dN/dE=(42.4±4.1)(E/20TeV)^(-2.31+0.11)exp(-E/(110±25Tev))TeV-1 cm^(-2)s^(-1)in the energy range from 8 to 300 TeV,implying a steady-state parent electron spectrum dN_(e)/dE_(e)∝(E_(e)/100TeV)^(-3.13±0.16)exp[(-E_(e)/(373±70TeV))^(2)]at energies above≈50 TeV.The cutoff energy of the electron spectrum is roughly equal to the expected current maximum energy of particles accelerated at the PWN terminal shock.Combining the X-ray and gamma-ray emission,the current space-averaged magnetic field can be limited to≈4.5μG.To satisfy the multi-wavelength spectrum and the y-ray extensions,the transport of relativistic particles within the PWN is likely dominated by the advection process under the free-expansion phase assumption. 展开更多
关键词 PWN Γ-RAY UHE
原文传递
LHAASO-KM2A detector simulation using Geant4 被引量:1
9
作者 Zhen Cao F.Aharonian +276 位作者 Q.An Axikegu Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi J.T.Cai Q.Cao W.Y.Cao Zhe Cao J.Chang J.F.Chang A.M.Chen E.S.Chen Liang Chen Lin Chen Long Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen Y.Chen N.Cheng Y.D.Cheng M.Y.Cui S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu X.Q.Dong K.K.Duan J.H.Fan Y.Z.Fan J.Fang K.Fang C.F.Feng L.Feng S.H.Feng X.T.Feng Y.L.Feng S.Gabici B.Gao C.D.Gao L.Q.Gao Q.Gao W.Gao W.K.Gao M.M.Ge L.S.Geng G.Giacinti G.H.Gong Q.B.Gou M.H.Gu F.L.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.Y.He X.B.He Y.He Y.K.Hor B.W.Hou C.Hou X.Hou H.B.Hu Q.Hu S.C.Hu D.H.Huang T.Q.Huang W.J.Huang X.T.Huang X.Y.Huang Y.Huang Z.C.Huang X.L.Ji H.Y.Jia K.Jia K.Jiang X.W.Jiang Z.J.Jiang M.Jin M.M.Kang T.Ke D.Kuleshov K.Kurinov B.B.Li Cheng Li Cong Li D.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li Jian Li Jie Li K.Li W.L.Li W.L.Li X.R.Li Xin Li Y.Z.Li Zhe Li Zhuo Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.Liu Y.N.Liu R.Lu Q.Luo H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao Z.Min W.Mitthumsiri H.J.Mu Y.C.Nan A.Neronov Z.W.Ou B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi Y.Q.Qi B.Q.Qiao J.J.Qin D.Ruffolo A.Sáiz D.Semikoz C.Y.Shao L.Shao O.Shchegolev X.D.Sheng F.W.Shu H.C.Song Yu.V.Stenkin V.Stepanov Y.Su Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Q.W.Tang Z.B.Tang W.W.Tian C.Wang C.B.Wang G.W.Wang H.G.Wang H.H.Wang J.C.Wang K.Wang L.P.Wang L.Y.Wang P.H.Wang R.Wang W.Wang X.G.Wang X.Y.Wang Y.Wang Y.D.Wang Y.J.Wang Z.H.Wang Z.X.Wang Zhen Wang Zheng Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu X.F.Wu Y.S.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang D.X.Xiao G.Xiao G.G.Xin Y.L.Xin Y.Xing Z.Xiong D.L.Xu R.F.Xu R.X.Xu W.L.Xu L.Xue D.H.Yan J.Z.Yan T.Yan C.W.Yang F.Yang F.F.Yang H.W.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.Yue H.D.Zeng T.X.Zeng W.Zeng M.Zha B.B.Zhang F.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang L.X.Zhang Li Zhang P.F.Zhang P.P.Zhang R.Zhang S.B.Zhang S.R.Zhang S.S.Zhang X.Zhang x.p.zhang Y.F.Zhang Yi Zhang Yong Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng J.H.Zheng B.Zhou H.Zhou J.N.Zhou M.Zhou P.Zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Radiation Detection Technology and Methods》 CSCD 2024年第3期1437-1447,共11页
KM2A is one of the main sub-arrays of LHAASO,working on gamma ray astronomy and cosmic ray physics at energies above 10 TeV.Detector simulation is the important foundation for estimating detector performance and data ... KM2A is one of the main sub-arrays of LHAASO,working on gamma ray astronomy and cosmic ray physics at energies above 10 TeV.Detector simulation is the important foundation for estimating detector performance and data analysis.It is a big challenge to simulate the KM2A detector in the framework of Geant4 due to the need to track numerous photons from a large number of detector units(>6000)with large altitude difference(30)and huge coverage(1.3).In this paper,the design of the KM2A simulation code G4KM2A based on Geant4 is introduced.The process of G4KM2A is optimized mainly in memory consumption to avoid memory overflow.Some simplifications are used to significantly speed up the execution of G4KM2A.The running time is reduced by at least 30 times compared to full detector simulation.The particle distributions and the core/angle resolution comparison between simulation and experimental data of the full KM2A array are also presented,which show good agreement. 展开更多
关键词 LHAASO KM2A SIMULATION GEANT4
原文传递
Evidence for particle acceleration approaching PeV energies in the W51 complex
10
作者 LHAASO Collaboration Zhen Cao +287 位作者 F.Aharonian Axikegu Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi W.Bian A.V.Bukevich Q.Cao W.Y.Cao Zhe Cao J.Chang J.F.Chang A.M.Chen E.S.Chen H.X.Chen Liang Chen Lin Chen Long Chen M.J.Chen M.L.Chen Q.H.Chen S.Chen S.H.Chen S.Z.Chen T.L.Chen Y.Chen N.Cheng Y.D.Cheng M.Y.Cui S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu X.Q.Dong K.K.Duan J.H.Fan Y.Z.Fan J.Fang J.H.Fang K.Fang C.F.Feng H.Feng L.Feng S.H.Feng X.T.Feng Y.Feng Y.L.Feng S.Gabici B.Gao C.D.Gao Q.Gao W.Gao W.K.Gao M.M.Ge L.S.Geng G.Giacinti G.H.Gong Q.B.Gou M.H.Gu F.L.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han M.Hasan H.H.He H.N.He J.Y.He Y.He Y.K.Hor B.W.Hou C.Hou X.Hou H.B.Hu Q.Hu S.C.Hu D.H.Huang T.Q.Huang W.J.Huang X.T.Huang X.Y.Huang Y.Huang X.L.Ji H.Y.Jia K.Jia K.Jiang X.W.Jiang Z.J.Jiang M.Jin M.M.Kang I.Karpikov D.Kuleshov K.Kurinov B.B.Li C.M.Li Cheng Li Cong Li D.Li F.Li H.B.Li H.C.Li Jian Li Jie Li K.Li S.D.Li W.L.Li W.L.Li X.R.Li Xin Li Y.Z.Li Zhe Li Zhuo Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu D.B.Liu H.Liu H.D.Liu J.Liu J.L.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.Liu Y.N.Liu Q.Luo Y.Luo H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao Z.Min W.Mitthumsiri H.J.Mu Y.C.Nan A.Neronov L.J.Ou P.Pattarakijwanich Z.Y.Pei J.C.Qi M.Y.Qi B.Q.Qiao J.J.Qin A.Raza D.Ruffolo A.Sáiz M.Saeed D.Semikoz L.Shao O.Shchegolev X.D.Sheng F.W.Shu H.C.Song Yu.V.Stenkin V.Stepanov Y.Su D.X.Sun Q.N.Sun X.N.Sun Z.B.Sun J.Takata P.H.T.Tam Q.W.Tang R.Tang Z.B.Tang W.W.Tian C.Wang C.B.Wang G.W.Wang H.G.Wang H.H.Wang J.C.Wang Kai Wang Kai Wang L.P.Wang L.Y.Wang P.H.Wang R.Wang W.Wang X.G.Wang X.Y.Wang Y.Wang Y.D.Wang Y.J.Wang Z.H.Wang Z.X.Wang Zhen Wang Zheng Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu Q.W.Wu S.Wu X.F.Wu Y.S.Wu S.Q.Xi J.Xia G.M.Xiang D.X.Xiao G.Xiao Y.L.Xin Y.Xing D.R.Xiong Z.Xiong D.L.Xu R.F.Xu R.X.Xu W.L.Xu L.Xue D.H.Yan J.Z.Yan T.Yan C.W.Yang C.Y.Yang F.Yang F.F.Yang L.L.Yang M.J.Yang R.Z.Yang W.X.Yang Y.H.Yao Z.G.Yao L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.Yue H.D.Zeng T.X.Zeng W.Zeng M.Zha B.B.Zhang F.Zhang H.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang Li Zhang P.F.Zhang P.P.Zhang R.Zhang S.B.Zhang S.R.Zhang S.S.Zhang X.Zhang x.p.zhang Y.F.Zhang Yi Zhang Yong Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao X.H.Zhao F.Zheng W.J.Zhong B.Zhou H.Zhou J.N.Zhou M.Zhou P.Zhou R.Zhou X.X.Zhou X.X.Zhou B.Y.Zhu C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu Y.C.Zou X.Zuo S.Celli 《Science Bulletin》 SCIE EI CAS CSCD 2024年第18期2833-2841,共9页
Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in t... Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in the adjacent star-forming region,W51B.However,the maximum acceleration capability of W51C for CRs remains elusive.Based on observations conducted with the Large High Altitude Air Shower Observatory(LHAASO),we report a significant detection ofγrays emanating from the W51 complex,with energies from 2 to 200 TeV.The LHAASO measurements,for the first time,extend theγ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV.By combining the"π^(0)-decay bump"featured data from Fermi-LAT,the broadbandγ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model.The observed spectral bending feature suggests an exponential cutoff at~400 TeV or a power-law break at~200 TeV in the CR proton spectrum,most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime.Additionally,two young star clusters within W51B could also be theoretically viable to produce the most energeticγrays observed by LHAASO.Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs. 展开更多
关键词 UHE c-ray Cosmic rays SNR W51C Star clusters
原文传递
Measurements of dihadron correlations relative to the event plane in Au+Au collisions at√^(S)NN=200 GeV 被引量:351
11
作者 H.Agakishiev M.M.Aggarwal +372 位作者 Z.Ahammed A.V.Alakhverdyants I.Alekseev J.Alford B.D.Anderson C.D.Anson D.Arkhipkin G.S.Averichev J.Balewski D.R.Beavis N.K.Behera R.Bellwied M.J.Betancourt R.R.Betts A.Bhasin A.K.Bhat H.Bichsel J.Bieleik J.Bielcikova B.Biritz L.C.Bland W.Borowski J.Bouchet E.Braidot A.V.Brandin A.Bridgeman S.G.Brovko E.Bruna S.Bueltmann I.Bunzarov T.P.Burton X.Z.Cai H.Caines M.Calderon de la Barca Sanchez D.Cebra R.Cendejas M.C.Cervantes Z.Chajecki P.Chaloupka S.Chattopadhyay H.F.Chen J.H.Chen J.Y.Chen L.Chen J.Cheng M.Cherney A.Chikanian K.E.Choi W.Christie P.Chung M.J.M.Codrington R.Corliss J.G.Cramer H.J.Crawford S.Dash A.Davila Leyva L.C.De Silvat R.R.Debbe T.G.Dedovich A.A.Derevschikov R.Derradi de Souza L.Didenko P.Djawotho S.M.Dogra X.Dong J.L.Drachenberg J.E.Draper J.C.Dunlop L.G Efimov M.Elnim J.Engelage G Eppley M.Estienne L.Eun O.Evdokimov R.Fatemi J.Fedorisin A.Feng R.G.Fersch P.Filip E.Finch V.Fine Y.Fisyak C.A.Gagliardi D.R.Gangadharan A.Geromitsos F.Geurts P.Ghosh Y.N.Gorbunov A.Gordon O.Grebenyuk D.Grosnick S.M.Guertin A.Gupta W.Guryn B.Haag O.Hajkova A.Hamed L-X.Han J.W.Harris J.P.Hays-Wehle M.Heinz S.Heppelmann A.Hirsch E.Hjort G.W.Hoffmann D.J.Hofiman B.Huang H.Z.Huang T.J.Humanic L.Huo G.Igo P.Jacobs W.W.Jacobs C.Jena F.Jin J.Joseph E.G.Judd S.Kabana K.Kang J.Kapitan K.Kauder H.Ke D.Keane A.Kechechyan D.Kettler D.P.Kikola J.Kiryluk A.Kisiel V.Kizka A.G.Knospe D.D.Koetke T.Kollegger J.Konzer I.Koralt L.Koroleva W.Korsch L.Kotchenda V.Kouchpil P.Kravtsov K.Krueger M.Krus L.Kumar P.Kurnadi M.A.C.Lamont J.M.Landgraf S.LaPointe J.Lauret A.Lebedev R.Lednicky J.H.Lee W.Leight M.J.LeVine C.Lil L.Li N.Li W.Li X.Li X.Li Y.Li Z.M.Li M.A.Lisa F.Liu H.Liu J.Liu T.Ljubicic W.J.Llope R.S.Longacre W.A.Love Y.Lu E.V.Lukashov X.Luo G.L.Ma Y.G.Mai D.P.Mahapatra R.Majka O.I.Mall L.K.Mangotra R.Manweiler S.Margetis C.Markert H.Masui H.S.Matis Yu.A.Matulenko D.MeDonald T.S.McShane A.Meschanin R.Milner N.G.Minaev S.Mioduszewski A.Mischke M.K.Mitrovski B.Mohanty M.M.Mondal B.Morozov D.A.Morozov M.G.Munhoz M.Naglis B.K.Nandi T.K.Nayak P.K.Netrakanti L.V.Nogach S.B.Nurushev G.Odyniec A.Ogawa Oh Ohlson V.Okorokov E.W.Oldag D.Olsont M.Pachr B.S.Page S.K.Pal Y.Pandit Y.Panebratsev T.Pawlak H.Pei T.Peitzmann C.Perkins W.Peryt S.C.Phatak P.Pile M.Planinic M.A.Ploskon J.Pluta D.Plyku N.Poljak A.M.Poskanzer B.V.K.S.Potukuchi C.B.Powell D.Prindle N.K.Pruthi A.M.Poskanzer B.V.K.S.Potukuchi B.Powell D.Prindle N.K.Pruthi P.R.Pujahar J.Putschke H.Qiu R.Raniwala S.Raniwala R.L.Ray R.Redwine R.Reed H.G.Riter J.B.Roberts O.V.Rogachevskiy J.L.Romero A.Rose L.Ruan J.Rusnak N.R.Sahoo S.Sakai I.Sakrejda T.Sakuma S.Salur J.Sandweiss E.Sangaline A.Sarkar J.Schambach R.P.Scharenberg A.M.Schmah N.Schmitz T.R.Schuster J.Seele J.Seger I.Selyuzhenkov P.Seyboth E.Shahaliev M.Shao M.Sharma S.S.Shi Q.Y.Shou E.P.Sichtermann F.Simon R.N.Singaraju M.J.Skoby N.Smirnov H.M.Spinka B.Srivastava T.D.S.Stanislaus D.Staszak S.G.Steadman J.R.Stevens R.Stock M.Strikhanov B.Stringfellow A.A.P.Suaide M.C.Suarez N.L.Subba M.Sumbera X.M.Sun Y.Sun Z.Sun B.Surrow D.N.Svirida T.J.M.Symons A.Szanto de Toledo J.Takahashi A.H.Tang Z.Tang L.H.Tarini T.Tarnowsky D.Thein J.H.Thomas J.Tian A.R.Timmins D.Tlusty M.Tokarev V.N.Tram S.Trentalange R.E.Tribble Tribedy O.D.Tsai T.Ullrich D.G.Underwood G.Van Buren G.van Nieuwenhuizen J.A.Vanfossen R.Varma G.M.S.Vasconcelos A.N.Vasiliev F.Videbaek Y.P.Viyogi S.Vokal M.Wadat M.Walker F.Wang G.Wang H.Wang J.S.Wang Q.Wang X.L.Wang Y.Wang G.Webb J.C.Webb G.D.Westfall C.Whitten H.Wieman S.W.Wissink R.Witt W.Witzke Y.F.Wu Xiao W.Xie H.Xu N.Xu Q.H.Xu W.Xu Y.Xu Z.Xu L.Xue Y.Yang P.Yepes K.Yip I-K.Yoo M.Zawisza H.Zbroszczyk W.Zhan J.B.Zhang S.Zhang W.M.Zhang x.p.zhang Y.Zhang Z.P.Zhang J.Zhao C.Zhong W.Zhou X.Zhu Y.H.Zhu R.Zoulkarneev Y.Zoulkarneeva 《Chinese Physics C》 SCIE CAS CSCD 2021年第4期198-241,共44页
Dihadron azimuthal correlations containing a high transverse momentum(pr)trigger particle are sensit-ive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the tr... Dihadron azimuthal correlations containing a high transverse momentum(pr)trigger particle are sensit-ive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium,ie.jet-quenching.Previous measurements revealed a strong modification to di-hadron azimuthal correlations in Au+Au collisions with respect to ptp and d+Au collisions.The modification in-creases with the collision centrality,suggesting a path-length or energy density dependence to the je-quenching ef-fect.This paper reports STAR measurements of dihadron azimuthal correlations in mid-central(20%-60%)Au+Au collisions at√^(S)NN=200 GeV as a function of the trigger particle's azimuthal angle relative to the event plane,Ф_(s)=|Ф_(t)-ψ_(Ep)|.The azimuthal correlation is studied as a function of both the trigger and associated particle pr.The subtractions of the combinatorial background and anisotropic flow,assuming Zero Yield At Minimum(ZYAM),are described.The correlation results are first discussed with subtraction of the even harmonic(elliptic and quadrangu-lar)flow backgrounds.The away-side correlation is strongly modifed,and the modification varies withФ_(s),with a double-peak structure for out-of-plane trigger particles.The near-side ridge(long range pseudo-rapidity△_(η)correla-tion)appears to drop with increasingФ_(s)while the jet-like component remains approximately constant.The correla-tion functions are further studied with the subtraction of odd harmonic triangular flow background arising from fluc-tuations.It is found that the triangular flow,while responsible for the majority of the amplitudes,is not sufficient to explain theφs-dependence of the ridge or the away-side double-peak structure.The dropping ridge withФ_(s)could be attributed to aФ_(s)-dependent lliptie anisotropy;however,the physics mechanism of the ridge remains an open ques-tion.Even with aФ_(s)-dependent elliptic flow,the away-side correlation structure is robust.These results,with extens-ive systematic studies of the dihadron correlations as a function ofФ_(s),trigger and associated particle pT,and the pseudo-rapidity range△_(η),should provide stringent inputs to help understand the underlying physics mechanisms of jet-medium interactions in high energy nuclear collisions. 展开更多
关键词 relativistic heavy ion collisions dihadron correlations jet-medium interactions anisotropic flow background event plane
原文传递
Observation of the Crab Nebula with LHAASO-KM2A−a performance study 被引量:12
12
作者 F.Aharonian Q.An +245 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi H.Cai J.T.Cai Z.Cao J.Chang J.F.Chang X.C.Chang B.M.Chen J.Chen L.Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai D.della Volpe B.D'Ettorre Piazzoli X.J.Dong J.H.Fan Y.Z.Fan Z.X.Fan J.Fang K.Fang C.F.Feng L.Feng S.H.Feng Y.L.Feng B.Gao C.D.Gao Q.Gao W.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.C.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang Q.L.Huang W.H.Huang X.T.Huang Z.C.Huang F.Ji X.L.Ji H.Y.Jia K.Jiang Z.J.Jiang C.Jin D.Kuleshov K.Levochkin B.B.Li C.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li K.Li W.L.Li X.Li X.R.Li Y.Li Y.Z.Li Z.Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood W.Mitthumsiri T.Montaruli Y.C.Nan B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi D.Ruffolo V.Rulev A.Sáiz L.Shao O.Shchegolev X.D.Sheng J.R.Shi H.C.Song Yu.V.Stenkin V.Stepanov Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wang C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wang R.N.Wang W.Wang X.G.Wang X.J.Wang X.Y.Wang Y.D.Wang Y.J.Wang Y.P.Wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang G.Xiao H.B.Xiao G.G.Xin Y.L.Xin Y.Xing D.L.Xu R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang L.X.Zhang P.F.Zhang P.P.Zhang R.Zhang S.R.Zhang S.S.Zhang X.Zhang x.p.zhang Y.Zhang Y.F.Zhang Y.L.Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou P.Zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Chinese Physics C》 SCIE CAS CSCD 2021年第2期518-530,共13页
A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detecto... A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detector construction is still underway,half of the KM2A array has been operating stably since the end of 2019.In this paper,we present the KM2A data analysis pipeline and the first observation of the Crab Nebula,a standard candle in very high energy γ-ray astronomy.We detect γ-ray signals from the Crab Nebula in both energy ranges of 10-100 TeV and>100 TeV with high significance,by analyzing the KM2A data of 136 live days between December 2019 and May 2020.With the observations,we test the detector performance,including angular resolution,pointing accuracy and cosmic-ray background rejection power.The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE=(1.13±0.05stat±0.08sys)×10^(-14).(E/20 TeV)-309±0.06stat±0.02syscm^(-2) s^(-1) TeV^(-1).It is consistent with previous measurements by other experiments.This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena,such as cosmic PeVatrons,might be discovered. 展开更多
关键词 Γ-RAY Crab Nebula extensive air showers cosmic rays
原文传递
Performance of LHAASO-WCDA and observation of the Crab Nebula as a standard candle 被引量:5
13
作者 F.Aharonian Q.An +257 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi H.Cai J.T.Cai Z.Cao Z.Cao J.Chang J.F.Chang X.C.Chang B.M.Chen J.Chen L.Chen L.Chen L.Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu D.della Volpe B.D'Ettorre Piazzoli X.J.Dong J.H.Fan Y.Z.Fan Z.X.Fan J.Fang K.Fang C.F.Feng L.Feng S.H.Feng Y.L.Feng B.Gao C.D.Gao Q.Gao W.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.C.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang Q.L.Huang W.H.Huang X.T.Huang Z.C.Huang F.Ji X.L.Ji H.Y.Jia K.Jiang Z.J.Jiang C.Jin D.Kuleshov K.Levochkin B.B.Li C.Li C.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li K.Li W.L.Li X.Li X.Li X.R.Li Y.Li Y.Z.Li Z.Li Z.Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood W.Mitthumsiri T.Montaruli Y.C.Nan B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi B.Q.Qiao D.Ruffolo V.Rulev A.Saiz L.Shao O.Shchegolev X.D.Sheng J.R.Shi H.C.Song Yu.V.Stenkin V.Stepanov Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wang C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wang R.N.Wang W.Wang W.Wang X.G.Wang X.J.Wang X.Y.Wang Y.D.Wang Y.J.Wang Y.P.Wang Z.Wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang G.Xiao H.B.Xiao G.G.Xin Y.L.Xin Y.Xing D.L.Xu R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang L.Zhang L.X.Zhang P.F.Zhang P.P.Zhang R.Zhang S.R.Zhang S.S.Zhang X.Zhang x.p.zhang Y.Zhang Y.Zhang Y.F.Zhang Y.L.Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou P.Zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Chinese Physics C》 SCIE CAS CSCD 2021年第8期166-181,共16页
The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard ... The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle.The WCDA-1 achieves a sensitivity of 65 mCU per year,with a statistical threshold of 5 cr.To accomplish this,a 97.7%cosmic-ray background rejection rate around 1 TeV and 99.8%around 6 TeV with an ap proximate photon acceptance of 50%is achieved after applying an algorithm to separate gamma-induced showers.The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45°at 1 TeV and better than 0.2°above 6 TeV,with a pointing accuracy better than 0.05°.These values all match the design specifications.The energy resolution is found to be 33%for gamma rays around 6 TeV.The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories. 展开更多
关键词 LHAASO-WCDA Crab Nebula angular resolution spectral energy distribution
原文传递
Measurement of away-side broadening with self-subtraction of flow in Au+Au collisions at √sNN=200 GeV 被引量:2
14
作者 L.Adamczyk J.R.Adams +359 位作者 J.K.Adkins G.Agakishiev M.M.Aggarwal Z.Ahammed I.Alekseev D.M.Anderson A.Aparin E.C.Aschenauer M.U.Ashraf F.G.Atetalla A.Attri G.S.Averichev V.Bairathi K.Barish A.Behera R.Bellwied A.Bhasin J.Bielcik J.Bielcikova L.C.Bland I.G.Bordyuzhin J.D.Brandenburg A.V.Brandin J.Butterworth H.Caines M.Calderón de la Barca Sánchez D.Cebra I.Chakaberia P.Chaloupka B.K.Chan F-H.Chang Z.Chang N.Chankova-Bunzarova A.Chatterjee D.Chen J.H.Chen X.Chen Z.Chen J.Cheng M.Cherney M.Chevalier S.Choudhury W.Christie X.Chu H.J.Crawford M.Csanád M.Daugherity T.G.Dedovich I.M.Deppner A.A.Derevschikov L.Didenko X.Dong J.L.Drachenberg J.C.Dunlop T.Edmonds N.Elsey J.Engelage G.Eppley S.Esumi O.Evdokimov A.Ewigleben O.Eyser R.Fatemi S.Fazio P.Federic J.Fedorisin C.J.Feng Y.Feng P.Filip E.Finch Y.Fisyak A.Francisco L.Fulek C.A.Gagliardi T.Galatyuk F.Geurts A.Gibson K.Gopal D.Grosnick W.Guryn A.I.Hamad A.Hamed S.Harabasz J.W.Harris S.He W.He X.H.He S.Heppelmann S.Heppelmann N.Herrmann E.Hoffman L.Holub Y.Hong S.Horvat Y.Hu H.Z.Huang S.L.Huang T.Huang X.Huang T.J.Humanic P.Huo G.Igo D.Isenhower W.W.Jacobs C.Jena A.Jentsch Y.JI J.Jia K.Jiang S.Jowzaee X.Ju E.G.Judd S.Kabana M.L.Kabir S.Kagamaster D.Kalinkin K.Kang D.Kapukchyan K.Kauder H.W.Ke D.Keane A.Kechechyan M.Kelsey Y.V.Khyzhniak D.P.Kikoła C.Kim B.Kimelman D.Kincses T.A.Kinghorn I.Kisel A.Kiselev M.Kocan L.Kochenda L.K.Kosarzewski L.Kramarik P.Kravtsov K.Krueger N.Kulathunga Mudiyanselage L.Kumar S.Kumar R.Kunnawalkam Elayavalli J.H.Kwasizur R.Lacey S.Lan J.M.Landgraf J.Lauret A.Lebedev R.Lednicky J.H.Lee Y.H.Leung C.Li W.Li W.Li X.Li Y.Li Y.Liang R.Licenik T.Lin Y.Lin M.A.Lisa F.Liu H.Liu P.Liu P.Liu T.Liu X.Liu Y.Liu Z.Liu T.Ljubicic W.J.Llope R.S.Longacre N.S.Lukow S.Luo X.Luo G.L.Ma L.Ma R.Ma Y.G.Ma N.Magdy R.Majka D.Mallick S.Margetis C.Markert H.S.Matis J.A.Mazer N.G.Minaev S.Mioduszewski B.Mohanty I.Mooney Z.Moravcova D.A.Morozov M.Nagy J.D.Nam Nasim Md K.Nayak D.Neff J.M.Nelson D.B.Nemes M.Nie G.Nigmatkulov T.Niida L.V.Nogach T.Nonaka A.S.Nunes G.Odyniec A.Ogawa S.Oh V.A.Okorokov B.S.Page R.Pak A.Pandav Y.Panebratsev B.Pawlik D.Pawlowska H.Pei C.Perkins L.Pinsky R.L.Pintér J.Pluta J.Porter M.Posik N.K.Pruthi M.Przybycien J.Putschke H.Qiu A.Quintero S.K.Radhakrishnan S.Ramachandran R.L.Ray R.Reed H.G.Ritter O.V.Rogachevskiy J.L.Romero L.Ruan J.Rusnak N.R.Sahoo H.Sako S.Salur J.Sandweiss S.Sato W.B.Schmidke N.Schmitz B.R.Schweid F.Seck J.Seger M.Sergeeva R.Seto P.Seyboth N.Shah E.Shahaliev P.V.Shanmuganathan M.Shao A.I.Sheikh F.Shen W.Q.Shen S.S.Shi Q.Y.Shou E.P.Sichtermann R.Sikora M.Simko J.Singh S.Singha N.Smirnov W.Solyst P.Sorensen H.M.Spinka B.Srivastava T.D.S.Stanislaus M.Stefaniak D.J.Stewart M.Strikhanov B.Stringfellow A.A.P.Suaide M.Sumbera B.Summa X.M.Sun X.Sun Y.Sun Y.Sun B.Surrow D.N.Svirida P.Szymanski A.H.Tang Z.Tang A.Taranenko T.Tarnowsky J.H.Thomas A.R.Timmins D.Tlusty M.Tokarev C.A.Tomkiel S.Trentalange R.E.Tribble P.Tribedy S.K.Tripathy O.D.Tsai Z.Tu T.Ullrich D.G.Underwood I.Upsal G.Van Buren J.Vanek A.N.Vasiliev I.Vassiliev F.Videbæk S.Vokal S.A.Voloshin F.Wang G.Wang J.S.Wang P.Wang Y.Wang Y.Wang Z.Wang J.C.Webb P.C.Weidenkaff L.Wen G.D.Westfall H.Wieman S.W.Wissink R.Witt Y.Wu Z.G.Xiao G.Xie W.Xie H.Xu N.Xu Q.H.Xu Y.F.Xu Y.Xu Z.Xu Z.Xu C.Yang Q.Yang S.Yang Y.Yang Z.Yang Z.Ye Z.Ye L.Yi K.Yip H.Zbroszczyk W.Zha C.Zhang D.Zhang S.Zhang S.Zhang x.p.zhang Y.Zhang Y.Zhang Z.J.Zhang Z.Zhang Z.Zhang J.Zhao C.Zhong C.Zhou X.Zhu Z.Zhu M.Zurek M.Zyzak 《Chinese Physics C》 SCIE CAS CSCD 2020年第10期59-67,共9页
High transverse momentum(pT)particle production is suppressed owing to the parton(jet)energy loss in the hot dense medium created in relativistic heavy-ion collisions.Redistribution of energy at low-to-modest pT has b... High transverse momentum(pT)particle production is suppressed owing to the parton(jet)energy loss in the hot dense medium created in relativistic heavy-ion collisions.Redistribution of energy at low-to-modest pT has been difficult to measure,owing to large anisotropic backgrounds.We report a data-driven method for background evaluation and subtraction,exploiting the away-side pseudorapidity gaps,to measure the jetlike correlation shape in Au+Au collisions at √sNN=200 GeV in the STAR experiment.The correlation shapes,for trigger particles pT>3GeV/c and various associated particle pT ranges within 0.5<pT<10GeV/c,are consistent with Gaussians,and their widths increase with centrality.The results indicate jet broadening in the medium created in central heavy-ion collisions. 展开更多
关键词 di-hadron correlations jet HEAVY-ION
原文传递
Reconstruction of Cherenkov image bymultiple telescopes of LHAASO-WFCTA 被引量:2
15
作者 F.Aharonian Q.An +272 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi J.T.Cai Zhe Cao Zhen Cao J.Chang J.F.Chang E.S.Chen Liang Chen Liang Chen Long Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen Y.Chen H.L.Cheng N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.D’Ettorre Piazzoli B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu Ddella Volpe K.K.Duan J.H.Fan Y.Z.Fan Z.X.Fan J.Fang K.Fang C.F.Feng L.Feng S.H.Feng X.T.Feng Y.L.Feng B.Gao C.D.Gao L.Q.Gao Q.Gao W.Gao W.K.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu F.L.Guo J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu Q.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang W.H.Huang X.T.Huang X.Y.Huang Y.Huang Z.C.Huang X.L.Ji H.Y.Jia K.Jia K.Jiang Z.J.Jiang M.Jin M.M.Kang T.Ke D.Kuleshov K.Levochkin B.B.Li Cheng Li Cong Li F.Li H.B.Li H.C.Li H.Y.Li J.Li Jian Li Jie Li K.Li WLLi XRLi Xin Li Xin Li YZLi Zhe Li Zhuo Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.Liu Y.N.Liu W.J.Long R.Lu Q.Luo H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood Z.Min W.Mitthumsiri Y.C.Nan Z.W.Ou B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi Y.Q.Qi B.Q.Qiao J.J.Qin D.Ruffolo A.Sáiz C.Y.Shao L.Shao O.Shchegolev X.D.Sheng J.Y.Shi H.C.Song Yu.V.Stenkin V.Stepanov Y.Su Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wang C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wang R.Wang R.N.Wang W.Wang X.G.Wang X.Y.Wang Y.Wang Y.D.Wang Y.J.Wang Y.P.Wang Z.H.Wang Z.X.Wang Zhen Wang Zheng Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu X.F.Wu Y.S.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang D.X.Xiao G.Xiao G.G.Xin Y.L.Xin Y.Xing Z.Xiong D.L.Xu R.X.Xu L.Xue D.H.Yan J.Z.Yan C.W.Yang F.F.Yang H.W.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.Yue H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang F.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang L.X.Zhang Li Zhang Lu Zhang P.F.Zhang P.P.Zhang R.Zhang S.B.Zhang S.R.Zhang S.S.Zhang X.Zhang x.p.zhang Y.F.Zhang Y.L.Zhang Yi Zhang Yong Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou P.Zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Radiation Detection Technology and Methods》 CSCD 2022年第4期544-557,共14页
Introduction One of main scientific goals of the Large High Altitude Air Shower Observatory(LHAASO)is to accurately measure the energy spectra of different cosmic ray compositions around the‘knee’region.The Wide Fiel... Introduction One of main scientific goals of the Large High Altitude Air Shower Observatory(LHAASO)is to accurately measure the energy spectra of different cosmic ray compositions around the‘knee’region.The Wide Field-of-View(FoV)Cherenkov Telescope Array(WFCTA),which is one of the main detectors of LHAASO and has 18 telescopes,is built to achieve this goal.Multiple telescopes are put together and point to connected directions for a larger FoV.Method Telescopes are deployed spatially as close as possible,but due to their own size,the distance between two adjacent telescopes is about 10 m.Therefore,the Cherenkov lateral distribution and the parallax between the two telescopes should be considered in the event building process for images crossing over the boundaries of FoVs of the telescopes.An event building method for Cherenkov images measured by multiple telescopes of WFCTA is developed.The performance of the shower measurements using the combined images is evaluated by comparing with showers that are fully contained by a virtual telescope in simulation.Results and conclusion It is proved that the developed event building process can help to increase the FoV of WFCTA by 30%while maintaining the same reconstruction quality,compared to the separate telescope reconstruction method. 展开更多
关键词 METHOD DIRECTIONS CONCLUSION
原文传递
Geometrical reconstruction of fluorescence events observed by the LHAASO experiment 被引量:1
16
作者 F.Aharonian Q.An +258 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi H.Cai J.T.Cai Z.Cao Z.Cao J.Chang J.F.Chang X.C.Chang B.M.Chen J.Chen L.Chen L.Chen L.Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu D.della Volpe B.DEtorre Piazzoli X.J.Dong J.H.Fan Y.Z.Fan Z.X.Fan J.Fang J.Fang C.F.Feng L.Feng S.H.Feng Y.L.Feng B.Gao C.D.Gao Q.Gao W.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.C.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang Q.L.Huang W.H.Huang X.T.Huang Z.C.Huang F.Ji X.L.Ji H.Y.Jia K.Jiang Z.J.Jiang C.Jin D.Kuleshov K.Levochkin B.B.Li C.Li C.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li K.Li W.L.Li X.Li X.Li X.R.Li Y.Li Y.Z.Li Z.Li Z.Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood W.Mitthumsiri T.Montaruli Y.C.Nan B.Y..Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi D.Ruffolo V.Rulev A.Saiz L.Shao O.Shchegolev X.D.Sheng J.R.Shi H.C.Song Yu.V.Stenkin V.Stepanov Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wang C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wang R.N.Wang W.Wang W.Wang X.G.Wang X.J.Wang X.Y.Wang Y.D.Wang Y.J.Wang Y.P.Wang Z.Wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang G.Xiao H.B.Xiao G.G.Xin Y.L.Xin Y.Xing D.L.Xu R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang L.Zhang L.X.Zhang P.F.Zhang P.F.Zhang R.Zhang S.R.Zhang S.S.Zhang X.Zhang x.p.zhang Y.Zhang Y.Zhang Y.F.Zhang Y.L.Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou P.Zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Chinese Physics C》 SCIE CAS CSCD 2021年第4期416-425,共10页
The LHAASO-WFCTA experiment,which aims to observe cosmic rays in the sub-EeV range using the fluorescence technique,uses a new generation of high-performance telescopes.To ensure that the experiment has ex-cellent det... The LHAASO-WFCTA experiment,which aims to observe cosmic rays in the sub-EeV range using the fluorescence technique,uses a new generation of high-performance telescopes.To ensure that the experiment has ex-cellent detection capability associated with the measurement of the energy spectrum,the primary composition of cosmic rays,and so on,an accurate geometrical reconstruction of air-shower events is fundamental.This paper de-scribes the development and testing of geometrical reconstruction for stereo viewed events using the WFCTA(Wide Field of view Cherenkov/Fluorescence Telescope Array)detectors.Two approaches,which take full advantage ofthe WFCTA detectors.are investigated.One is the stereo-angular method,which uses the pointing of triggered SiPMs in the shower trajectory,and the other is the stereo-timing method,which uses the triggering time of the fired SiPMs.The results show that both methods have good geometrical resolution:the resolution of the stereo-timing method is slightly better than the stereo-angular method because the resolution of the latter is slightly limited by the shower track length. 展开更多
关键词 cosmic ray fluorescence telescope stereo observation geometrical reconstruction
原文传递
Prospects for a multi-TeV gamma-ray sky survey with the LHAASO water Cherenkov detector array 被引量:1
17
作者 F.Aharonian V.Alekseenko +212 位作者 Q.An Axikegu L.X.Bai Y.W.Bao D.Bastieri9 X.J.Bi H.Cai Zhe Cao Zhen Cao J.Chang J.F.Chang X.C.Chang S.P.Chao B.M.Chen J.Chen L.Chen L.Chen M.L.Chen M.J.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu B.D'Ettorre Piazzoli J.Fang J.H.Fan Y.Z.Fan C.F Feng L.Feng S.H.Feng Y.L.Feng B.Gao Q.Gao W.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He J.C.He M.Heller S.L.He Y.He C.Hou D.H.Huang Q.L.Huang W.H.Huang X.T.Huang H.B.Hu S.Hu H.Y.Jia K.Jiang F.Ji C.Jin X.L.Ji K.Levochkin E.W.Liang Y.F Liang Cheng Li Cong Li F.Li H.Li H.B.Li H.C.Li H.M.Li J.Li K.Li W.L.Li X.Li X.R.Li Y.Li Z.Li Z.Li B.Liu C.Liu D.Liu H.D.Liu H.Liu J.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma J.R.Mao A.Masood X.H.Ma W.Mitthumsiri T.Montaruli Y.C.Nan P.Pattarakijwanich Z.Y.Pei B.Q.Qiao M.Y.Qi D.Ruffolo V.Rulev A.Sáiz L.Shao O.Shchegolev X.D.Sheng J.R.Shi Y.Stenkin V.Stepanov Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian D.D.Volpe C.Wang H.Wang H.G.Wang J.C.Wang L.Y.Wang W.Wang W.Wang X.G.Wang X.Y.Wang X.J.Wang Y.D.Wang Y.J.Wang Y.N.Wang Y.P.Wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu G.M.Xiang G.Xiao G.G.Xin Y.Xing R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Q.Yuan Y.H.Yu Z.J.Jiang H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang P.F.Zhang P.P.Zhang S.R.Zhang S.S.Zhang X.Zhang x.p.zhang Yi Zhang Yong Zhang Y.F.g Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao F.Zheng Y.Zheng J.N.Zhou P.Zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Chinese Physics C》 SCIE CAS CSCD 2020年第6期123-132,共10页
The Water Cherenkov Detector Array(WCDA) is a major component of the Large High Altitude Air Shower Array Observatory(LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under con... The Water Cherenkov Detector Array(WCDA) is a major component of the Large High Altitude Air Shower Array Observatory(LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under construction. WCDA is aimed at the study of TeV γ-rays. In order to evaluate the prospects of searching for TeV γ-ray sources with WCDA, we present a projection of the one-year sensitivity of WCDA to TeV γ-ray sources from TeVCat using an all-sky approach. Out of 128 TeVCat sources observable by WCDA up to a zenith angle of 45°, we estimate that 42 would be detectable in one year of observations at a median energy of 1 TeV. Most of them are Galactic sources, and the extragalactic sources are Active Galactic Nuclei(AGN). 展开更多
关键词 TeVγ-ray astronomy observational prospect LHAASO-WCDA
原文传递
A dynamic range extension system for LHAASOWCDA-1
18
作者 F.Aharonian Q.An +257 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi H.Cai J.T.Cai Z.Cao Z.Cao J.Chang J.F.Chang X.C.Chang B.M.Chen J.Chen L.Chen L.Chen L.Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu D.della Volpe B.D’Ettorre Piazzoli X.J.Dong J.H.Fan Y.Z.Fan Z.X.Fan J.Fang K.Fang C.F.Feng L.Feng S.H.Feng Y.L.Feng B.Gao C.D.Gao Q.Gao W.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.C.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang Q.L.Huang W.H.Huang X.T.Huang Y.Huang Z.C.Huang F.Ji X.L.Ji H.Y.Jia K.Jiang Z.J.Jiang C.Jin D.Kuleshov K.Levochkin B.B.Li C.Li C.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li K.Li W.L.Li X.Li X.Li X.R.Li Y.Li Y.Z.Li Z.Li Z.Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood W.Mitthumsiri T.Montaruli Y.C.Nan B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi D.Ruffolo V.Rulev A.Sáiz L.Shao O.Shchegolev X.D.Sheng J.R.Shi H.C.Song Yu.V.Stenkin V.Stepanov Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wang C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wang R.N.Wang W.Wang W.Wang X.G.Wang X.J.Wang X.Y.Wang Y.D.Wang Y.J.Wang Y.P.Wang Z.Wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang G.Xiao H.B.Xiao G.G.Xin Y.L.Xin Y.Xing D.L.Xu R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang L.Zhang L.X.Zhang P.F.Zhang P.P.Zhang R.Zhang S.R.Zhang S.S.Zhang X.Zhang x.p.zhang Y.Zhang Y.Zhang Y.F.Zhang Y.L.Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou P.Zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Radiation Detection Technology and Methods》 CSCD 2021年第4期520-530,共11页
Purpose The main scientific goal of LHAASO-WCDA is to survey gamma-ray sources with energy from 100 GeV to 30 TeV.To observe high-energy shower events,especially to measure the energy spectrum of cosmic rays from 100 ... Purpose The main scientific goal of LHAASO-WCDA is to survey gamma-ray sources with energy from 100 GeV to 30 TeV.To observe high-energy shower events,especially to measure the energy spectrum of cosmic rays from 100 TeV to 10 PeV,a dynamic range extension system(WCDA++)is designed to use a 1.5-inch PMT with a dynamic range of four orders of magnitude for each cell in WCDA-1.Method The dynamic range is extended by using these PMTs to measure the effective charge density in the core region of air shower events,which is an important parameter for identifying the composition of primary particles.Result and Conclusion The system has been running for more than one year.In this paper,the details of the design and performance of WCDA++are presented. 展开更多
关键词 LHAASO-WCDA WCDA++ Water Cherenkov detector PERFORMANCE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部