期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Regulating phase ratios and mechanical properties of polysynthetic twinned TiAl single crystals via annealing
1
作者 L.W.Kong Z.B.Xing +8 位作者 F.R.Chen Q.Q.Yin L.Pang x.liu Y.Shu P.Li Z.X.Qi G.Chen Y.J.Tian 《Journal of Materials Science & Technology》 2025年第9期223-236,共14页
Polysynthetic twinned(PST)TiAl single crystal specifically refers to a fully lamellar TiAl single crystal with parallel phase interfaces and twin interfaces grown by directional solidification.In this paper,PST single... Polysynthetic twinned(PST)TiAl single crystal specifically refers to a fully lamellar TiAl single crystal with parallel phase interfaces and twin interfaces grown by directional solidification.In this paper,PST single crystals with different phase ratios are obtained by annealing at specific temperatures and holding times.The results show that the diffusion rates of Ti and Al elements at various temperatures directly trigger and propel the surface recrystallization and variation in the internal phase ratio.When the temperature is lower than 1448 K,the diffusion rate of Ti is obviously higher than that of Al,which causes one denseα_(2)recrystallized layer to form on the surface of TiAl single crystals.Meanwhile,as more Ti elements migrate to the surface,theα_(2)phase ratio inside the TiAl single crystal thereby decreases.When the temperature exceeds 1448 K,the diffusion rate of Al gradually reverses to exceed that of Ti,which forms the surface sandwiched recrystallization dominated byγphase and simultaneously increasesα_(2)phase ratio inside the TiAl single crystal.The variation in the two-phase ratio directly induces a significant change in the lamellae thickness,which exhibits different tensile behaviors of PST-TiAl single crystal.When theα_(2)phase content is less than 20%,widerγlamellae make it easier for dislocations to be activated within its lamellae and continuously move across theγ/α_(2)interfaces,thereby obtaining better tensile plasticity.As theα_(2)phase content exceeds 30%,finerγlamellae inhibit the dislocation initiation,resulting in the fracture occurrence of TiAl single crystal before yielding.No matter how the phase ratio changes,the crack preferentially initiates withinα_(2)lamellae.However,the crack propagation follows different paths based on variousγlamella thicknesses.The fracture mode of PST-TiAl single crystal also changes from shear fracture along slip bands within theγlamella to brittle fracture along the{1¯100}planes withinα_(2)lamella. 展开更多
关键词 PST-TiAl single crystal Surface recrystallization Phase ratio regulation Diffusion rate Fracture mode
原文传递
Microstructure evolution and shape memory behaviors of Ni_(47)Ti_(44)Nb_(9)alloy subjected to multistep thermomechanical loading with different prestrain levels 被引量:3
2
作者 Y.H.Zhang H.Li +2 位作者 Z.W.Yang x.liu Q.F.Gu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第4期80-93,共14页
Ni_(47)Ti_(44)Nb_(9)shape memory alloy(SMA)is a promising material in the aerospace field due to its wide transformation hysteresis.The application of shape memory effect depends on multistep thermomechan-ical loading... Ni_(47)Ti_(44)Nb_(9)shape memory alloy(SMA)is a promising material in the aerospace field due to its wide transformation hysteresis.The application of shape memory effect depends on multistep thermomechan-ical loading,viz.,low-temperature deformation and subsequent heating to recovery.Low-temperature deformation prestrain plays a pivotal role in shape memory properties tailoring of SMA components.However,microstructure evolution and deformation mechanisms of Ni_(47)Ti_(44)Nb_(9)SMA subjected to vari-ous prestrain levels are still unclear.To this end,microstructure evolution and shape memory behaviors of Ni_(47)Ti_(44)Nb_(9)alloy subjected to multistep thermomechanical loading with prestrain levels of 8%-16%at-28℃(M_(s)+30℃)were investigated.The results demonstrate that the stress-strain curve of the specimen exhibits four distinct stages at a maximal prestrain of 16%.Whereas stageⅡand stageⅢend at prestrains of∼8%and∼12%,respectively.In stageⅡ,the stress-induced martensitic transformation is accompanied by the dislocation slip of the NiTi matrix andβ-Nb inclusions.In stageⅢ,in addition to the higher density of dislocations and further growth of stress-induced martensite variants(SIMVs),(001)compound twins are introduced as a result of the(001)deformation twinning in stress-induced martensite.More{20-1}martensite twins are gradually introduced in stageⅣ.Correspondingly,after subsequent unloading and heating,a higher density of{114}austenite twins form in the specimen with a larger prestrain of 16%.With increasing prestrain from 8%to 16%,the recoverable strainε_(re)^(T)upon heating increases first and then decreases.Theε_(re)^(T)obtains a maximum of 7.03%at 10%prestrain and de-creases to 6.17%at 16%prestrain.The increase ofε_(re)^(T)can be attributed to the formation of new SIMVs,the further growth of existing SIMVs,and the recoverable(001)compound twins.While the decrease ofε_(re)^(T)is mainly associated with the irrecoverable strain by{20−1}martensite twins.The effect ofβ-Nb inclusions on the evolution of SIMVs is also found herein that deformedβ-Nb inclusions can significantly hinder the growth and recoverability of adjacent stress-induced martensite. 展开更多
关键词 Ni_(47)Ti_(44)Nb_(9)shape memory alloy Wide transformation hysteresis Thermomechanical loading Microstructure evolution Shape memory behaviors Stress-induced martensitic transformation Deformation twinning
原文传递
Phase-field modeling for anisotropic ductile damage of magnesium alloys at finite deformations 被引量:1
3
作者 C.Xie X.K.He +2 位作者 x.liu J.H.Ye J.B.Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2967-2984,共18页
The damage anisotropy of an extruded ZK60 Mg alloy is characterized using tensile tests and scanning electronic microscopy.The accumulation of anisotropic deformations leads to the great differences of the dimple evol... The damage anisotropy of an extruded ZK60 Mg alloy is characterized using tensile tests and scanning electronic microscopy.The accumulation of anisotropic deformations leads to the great differences of the dimple evolution and strains at fracture along different loading directions.To introduce the anisotropic deformation information into the damage constitutive relationship,a thermodynamically consistent phase-field model of ductile damage fully coupled with elastoplastic finite deformations is developed in this study.Using the user-defined constitutive relationship and displacement-temperature coupling element,the finite element simulations are conducted.The results show that:(1)ZK60 Mg alloys presents clear R-value difference in 0°,45°,and 90°tests of intact specimens.The 45°test possesses the greatest R-value(1.50)and the greatest strain at fracture,however,the R-value for 0°is less than 1,indicating the thinning is preferential.(2)The higher ultimate stress leads to a larger average dimension of the dimples,whereas the higher density correlates with a larger elongation ratio at the fracture.The disappearance of the stress-bearing area indicates that the phase-field assumption on stress degradation is completely compatible with the dimple analysis on fractography.(3)The simulation results of the stress-strain relationships and damage paths correlate well with the experimental ductile damage of magnesium alloys at 200◦C.Slight errors are basically attributed to the modeling parameters and finite element iteration algorithm.The proposed model presents fine applicability and reliability for the predictions of plastic deformations,ductile damage,and fracture of anisotropic Mg alloys. 展开更多
关键词 Ductile damage ANISOTROPY Phase field Constitutive relationship MAGNESIUM
在线阅读 下载PDF
Near-Earth Asteroids as the Parents of theδ-Cancrid Meteoroid Stream
4
作者 G.I.Kokhirova M.Zhang +2 位作者 X.-G.Li A.I.Zhonmuhammadi x.liu 《Research in Astronomy and Astrophysics》 CSCD 2024年第12期11-23,共13页
Theδ-Cancrid meteoroid stream forms four active meteor showers which are observable on the Earth annually during January–February and August–September.The stream's definite parent comet has not been established... Theδ-Cancrid meteoroid stream forms four active meteor showers which are observable on the Earth annually during January–February and August–September.The stream's definite parent comet has not been established.We performed a search for near-Earth asteroids(NEAs)associated with this stream.We have followed the backward evolution of the orbital elements of a sample of NEAs and found their orbits at the Earth-crossing positions.Using these orbits,we calculated the theoretical parameters of meteor showers associated with the considered NEAs.We carried out our search for observable active showers that match theoretically predicted ones with published data,and the result turned out that the predicted meteor showers of 13 NEAs were identified with the active showers produced by theδ-Cancrid meteoroid stream.The comet-like orbits of NEAs and established association with active meteor showers indicate their common cometary origin.The NEAs considered are moving within the stream and likely represent the dormant remnants of a parent comet of theδ-Cancrid asteroid-meteoroid complex that disintegrated more than 12 thousand years ago. 展开更多
关键词 comets general-minor planets-asteroids-δ-Cancrids-meteorites-meteors-meteoroids
在线阅读 下载PDF
柔性版的制版研究(下) 被引量:1
5
作者 x.liu J.T.Guthrie +2 位作者 C Bryant 戢小亮 《印刷技术》 北大核心 2004年第20期53-54,共2页
5.后曝光分析 图9所示为后曝光时间对印版浮雕深度的影响(背面曝光:160个单元;正面曝光:7分钟;洗版速度:200毫米/分钟;洗版压力:0.04毫米;干燥温度:60℃;干燥时间:2小时;稳定处理:室温下在空气中静置24小时),图10所示为后曝光时间对印... 5.后曝光分析 图9所示为后曝光时间对印版浮雕深度的影响(背面曝光:160个单元;正面曝光:7分钟;洗版速度:200毫米/分钟;洗版压力:0.04毫米;干燥温度:60℃;干燥时间:2小时;稳定处理:室温下在空气中静置24小时),图10所示为后曝光时间对印版网点大小的影响(背面曝光:160个单元;正面暴光:7分钟;洗版速度:200毫米/分钟;洗版压力:0.04毫米;干燥温度:60℃;干燥时间:2小时;稳定处理:室温下在空气中静置24小时). 展开更多
关键词 柔性版 制版技术 后曝光时间 印版 浮雕深度 去黏处理
在线阅读 下载PDF
柔性版的制版研究(上) 被引量:1
6
作者 x.liu J.T.Guthrie +2 位作者 C Bryant 戢小亮 《印刷技术》 北大核心 2004年第14期22-29,共8页
近几年来,柔性版印刷以其独特的优势在全球领域得到了长足的发展,在很多应用领域,柔性版印刷已经向胶印和凹印发起了挑战,不仅在效率方面,在质量方面也不甘示弱.
关键词 制版技术 柔性版印刷 版材 厚度
在线阅读 下载PDF
Releasing the residual stress of C_(f)/SiC-GH3536 joint by designing an Ag-Cu-Ti+Sc_(2)(WO_(4))_(3) composite filler metal 被引量:6
7
作者 P.Wang x.liu +3 位作者 H.Wang J.Cao J.Qi J.Feng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第13期102-109,共8页
Due to native character of thermal expansion coefficient(CTE)mismatch between C_(f)/SiC and GH3536,achieving high strength joint was a huge challenge for C_(f)/SiC-GH3536 joints.Herein,a composite filler metal of Ag-C... Due to native character of thermal expansion coefficient(CTE)mismatch between C_(f)/SiC and GH3536,achieving high strength joint was a huge challenge for C_(f)/SiC-GH3536 joints.Herein,a composite filler metal of Ag-Cu-Ti+Sc_(2)(WO_(4))_(3) was developed to join C_(f)/SiC and GH3536.This work introduced Sc_(2)(WO_(4))_(3) to Ag-Cu-Ti system as a negative thermal expansion(NTE)reinforcing phase to release joint residual stress.Sc_(2)(WO_(4))_(3) was evenly distributed in the brazing seam and reacted with Ti to form Ti_(3)O_(5) reaction layer.The results of finite element analysis showed that the residual stress of the joints was effectively released by introducing Sc_(2)(WO_(4))_(3) reinforcing phase,and the mises stress was decreased from447 to 401 MPa.The maximum shear strength of the C_(f)/SiC-GH3536 joint brazed with Ag-Cu-Ti+6 vol%Sc_(2)(WO_(4))_(3) filler alloys was 64 MPa,which was about 2.6 times higher than that of Ag-Cu-Ti alloys.The results of this study provide a promising strategy for the introduction of new Sc_(2)(WO_(4))_(3) reinforcing phase in Ag-Cu-Ti system,and improve the reliability and feasibility of composite brazing alloy in brazing filed. 展开更多
关键词 Negative thermal expansion BRAZING Residual stress Composite brazing alloy CTE
原文传递
Synchronous optimization of strengths, ductility and corrosion resistances of bulk nanocrystalline 304 stainless steel 被引量:4
8
作者 S.G.Wang M.Sun +5 位作者 S.Y.Liu x.liu Y.H.Xu C.B.Gong K.Long Z.D.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第2期161-172,共12页
Structural materials usually suffer from several attacks during their service,such as tension,fatigue and corrosion.It is necessary to synchronously improve these properties for their lightweight and longlifetime,but ... Structural materials usually suffer from several attacks during their service,such as tension,fatigue and corrosion.It is necessary to synchronously improve these properties for their lightweight and longlifetime,but corrosion resistance and ductility are generally inverse correlation with strength,it is very difficult to simultaneously optimize all three properties.However,bulk nanocrystalline 304 stainless steel(BN-304SS)produced by severe rolling technology possessed the larger yield and ultimate tensile strengths with sufficient elongation(>40%)during tensile test,the larger saturation stress and longer lifetime during low-cycle fatigue,the enhanced uniform and pitting corrosion resistances during fiveday immersion test in 6 mol/L HCl,the lowered stress corrosion cracking(SCC)susceptibility with larger yield(~2.40 GPa)and ultimate tensile(~2.66 GPa)strengths,and enough elongation(>30%)during stress corrosion in comparison with conventional polycrystalline 304 stainless steel(CP-304 SS)counterpart.The uniform and pitting corrosion resistances of fractured BN-304SS were enhanced in comprsion with those of fractured CP-304 SS during seven-day immersion test in 1 mol/L HCl.These results demonstrated the strengths,ductility and corrosion resistances of BN-304SS can be simultaneously optimized by severe rolling technology.These improved results of BN-304SS in different disciplines were understood by its valence electron configurations rather than traditional microstructural parameters. 展开更多
关键词 STAINLESS steel PITTING CORROSION Stress CORROSION TENSILE properties Low-cycle fatigue Severe rolling technology
原文传递
Methods for a blind analysis of isobar data collected by the STAR collaboration 被引量:9
9
作者 J.Adam L.Adamczyk +366 位作者 J.R.Adams J.K.Adkins G.Agakishiev M.M.Aggarwal Z.Ahammed I.Alekseev D.M.Anderson A.Aparin E.C.Aschenauer M.U.Ashraf F.G.Atetalla A.Attri G.S.Averichev V.Bairathi K.Barish A.Behera R.Bellwied A.Bhasin J.Bielcik J.Bielcikova L.C.Bland I.G.Bordyuzhin J.D.Brandenburg A.V.Brandin J.Butterworth H.Caines M.Calderon de la Barca Sanchez D.Cebra I.Chakaberia P.Chaloupka B.K.Chan F-H.Chang Z.Chang N.Chankova-Bunzarova A.Chatterjee D.Chen J.Chen J.H.Chen X.Chen Z.Chen J.Cheng M.Cherney M.Chevalier S.Choudhury W.Christie X.Chu H.J.Crawford M.Csanad M.Daugherity T.G.Dedovich I.M.Deppner A.A.Derevschikov L.Didenko X.Dong J.L.Drachenberg J.C.Dunlop T.Edmonds N.Elsey J.Engelage G.Eppley S.Esumi O.Evdokimov A.Ewigleben O.Eyser R.Fatemi S.Fazio P.Federic J.Fedorisin C.J.Feng Y.Feng P.Filip E.Finch Y.Fisyak A.Francisco L.Fulek C.A.Gagliardi T.Galatyuk F.Geurts A.Gibson K.Gopal X.Gou D.Grosnick W.Guryn A.I.Hamad A.Hamed S.Harabasz J.W.Harris S.He W.He X.H.He Y.He S.Heppelmann S.Heppelmann N.Herrmann E.Hoffman L.Holub Y.Hong S.Horvat Y.Hu H.Z.Huang S.L.Huang T.Huang X.Huang T.J.Humanic P.Huo G.Igo D.Isenhower W.W.Jacobs C.Jena A.Jentsch Y.Ji J.Jia K.Jiang S.Jowzaee X.Ju E.G.Judd S.Kabana M.L.Kabir S.Kagamaster D.Kalinkin K.Kang D.Kapukchyan K.Kauder H.W.Ke D.Keane A.Kechechyan M.Kelsey Y.V.Khyzhniak D.P.Kikoła C.Kim B.Kimelman D.Kincses T.A.Kinghorn I.Kisel A.Kiselev M.Kocan L.Kochenda L.K.Kosarzewski L.Kramarik P.Kravtsov K.Krueger N.Kulathunga Mudiyanselage L.Kumar S.Kumar R.Kunnawalkam Elayavalli J.H.Kwasizur R.Lacey S.Lan J.M.Landgraf J.Lauret A.Lebedev R.Lednicky J.H.Lee Y.H.Leung C.Li C.Li W.Li W.Li X.Li Y.Li Y.Liang R.Licenik T.Lin Y.Lin M.A.Lisa F.Liu H.Liu P.Liu P.Liu T.Liu x.liu Y.Liu Z.Liu T.Ljubicic W.J.Llope R.S.Longacre N.S.Lukow S.Luo X.Luo G.L.Ma L.Ma R.Ma Y.G.Ma N.Magdy R.Majka D.Mallick S.Margetis C.Markert H.S.Matis J.A.Mazer N.G.Minaev S.Mioduszewski B.Mohanty I.Mooney Z.Moravcova D.A.Morozov M.Nagy J.D.Nam Md.Nasim K.Nayak D.Neff J.M.Nelson D.B.Nemes M.Nie G.Nigmatkulov T.Niida L.V.Nogach T.Nonaka A.S.Nunes G.Odyniec A.Ogawa S.Oh V.A.Okorokov B.S.Page R.Pak A.Pandav Y.Panebratsev B.Pawlik D.Pawlowska H.Pei C.Perkins L.Pinsky R.L.Pinter J.Pluta J.Porter M.Posik N.K.Pruthi M.Przybycien J.Putschke H.Qiu A.Quintero S.K.Radhakrishnan S.Ramachandran R.L.Ray R.Reed H.G.Ritter O.V.Rogachevskiy J.L.Romero L.Ruan J.Rusnak N.R.Sahoo H.Sako S.Salur J.Sandweiss S.Sato W.B.Schmidke N.Schmitz B.R.Schweid F.Seck J.Seger M.Sergeeva R.Seto P.Seyboth N.Shah E.Shahaliev P.V.Shanmuganathan M.Shao A.I.Sheikh W.Q.Shen S.S.Shi Y.Shi Q.Y.Shou E.P.Sichtermann R.Sikora M.Simko J.Singh S.Singha N.Smirnov W.Solyst P.Sorensen H.M.Spinka B.Srivastava T.D.S.Stanislaus M.Stefaniak D.J.Stewart M.Strikhanov B.Stringfellow A.A.P.Suaide M.Sumbera B.Summa X.M.Sun X.Sun Y.Sun Y.Sun B.Surrow D.N.Svirida P.Szymanski A.H.Tang Z.Tang A.Taranenko T.Tarnowsky J.H.Thomas A.R.Timmins D.Tlusty M.Tokarev C.A.Tomkiel S.Trentalange R.E.Tribble P.Tribedy S.K.Tripathy O.D.Tsai Z.Tu T.Ullrich D.G.Underwood I.Upsal G.Van Buren J.Vanek A.N.Vasiliev I.Vassiliev F.Videbæk S.Vokal S.A.Voloshin F.Wang G.Wang J.S.Wang P.Wang Y.Wang Y.Wang Z.Wang J.C.Webb P.C.Weidenkaff L.Wen G.D.Westfall H.Wieman S.W.Wissink R.Witt Y.Wu Z.G.Xiao G.Xie W.Xie H.Xu N.Xu Q.H.Xu Y.F.Xu Y.Xu Z.Xu Z.Xu C.Yang Q.Yang S.Yang Y.Yang Z.Yang Z.Ye Z.Ye L.Yi K.Yip Y.Yu H.Zbroszczyk W.Zha C.Zhang D.Zhang S.Zhang S.Zhang X.P.Zhang Y.Zhang Y.Zhang Z.J.Zhang Z.Zhang Z.Zhang J.Zhao C.Zhong C.Zhou X.Zhu Z.Zhu M.Zurek M.Zyzak STAR Collaboration Abilene 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第5期43-50,共8页
In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar ... In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar collision species alternated frequently between 9644 Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr.In order to conduct blind analyses of studies related to the chiral magnetic effect in these isobar data,STAR developed a three-step blind analysis procedure.Analysts are initially provided a"reference sample"of data,comprised of a mix of events from the two species,the order of which respects time-dependent changes in run conditions.After tuning analysis codes and performing time-dependent quality assurance on the reference sample,analysts are provided a species-blind sample suitable for calculating efficiencies and corrections for individual≈30-min data-taking runs.For this sample,species-specific information is disguised,but individual output files contain data from a single isobar species.Only run-by-run corrections and code alteration subsequent to these corrections are allowed at this stage.Following these modifications,the"frozen"code is passed over the fully un-blind data,completing the blind analysis.As a check of the feasibility of the blind analysis procedure,analysts completed a"mock data challenge,"analyzing data from Au+Au collisions at√^(S)NN=27 Ge V,collected in 2018.The Au+Au data were prepared in the same manner intended for the isobar blind data.The details of the blind analysis procedure and results from the mock data challenge are presented. 展开更多
关键词 Blind analysis Chiral magnetic effect Heavy-ion collisions
在线阅读 下载PDF
In-situ synchrotron high energy X-ray diffraction study on the internal strain evolution of D019-α2 phase during high-temperature compression and subsequent annealing in a TiAl alloy 被引量:4
10
作者 x.liu L.Song +2 位作者 A.Stark F.Pyczak T.B.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第32期212-222,共11页
The residual stress in the D019-α2 phase is known to be significantly higher than that in the L10-γphase in TiAl alloys after deformation due to the poor plasticity and strong mechanical anisotropy of theα2 phase.H... The residual stress in the D019-α2 phase is known to be significantly higher than that in the L10-γphase in TiAl alloys after deformation due to the poor plasticity and strong mechanical anisotropy of theα2 phase.However,the internal stress accumulation and relaxation in theα2 phase during high-temperature deformation and annealing are scarcely investigated.In this study,for the first time,the internal strain evolution and load partitioning between theα2 andγphases at high temperatures are characterized by in-situ synchrotron high energy X-ray diffraction(HEXRD)technique.The plastic deformation is at least initiated at a stress of roughly 200 MPa in theγphase and 775 MPa in theα2 phase.The intergranular strains in theα2 phase are generated by the onset of dislocation glide in theγphase,and accentuated with the accumulated dislocations and the ensuing twinning activity.After unloading,great intergranular strains are preserved in theα2 phase constrained by the heavily plastically deformedγphase.During subsequent heating from 400 to 1000℃,the internal strains in theα2 phase are almost fully relaxed by substantial dislocation annihilation and rearrangement in theγphase.During annealing at 800℃,the internal strain relaxation is rapid in the initial 10 min,whereas considerably retarded subsequently.The extent of relaxation after holding at 800℃for 1 h is equivalent to that of heating in an effective temperature range of 680-880℃for 10 min.The in-situ lattice strain measurements with various thermal relaxation schemes provide guidance for the stress relief annealing of TiAl components. 展开更多
关键词 TiAl alloys Synchrotron radiation Intergranular strain Stress relaxation
原文传递
利用地方震、远震走时和面波数据联合反演日本俯冲带P波和S波层析成像 被引量:1
11
作者 x.liu D.P.Zhao +1 位作者 张晓曼(译) 赵小艳(校) 《世界地震译丛》 2019年第1期35-63,共29页
通过最新收集的大量高质量的地方震和远震事件的到时数据进行联合反演,我们确定了日本俯冲带约700km深度的P波和S波速度层析成像。我们还使用远震瑞利波的振幅和相速度,确定了日本及其附近海域下方20~150s周期基阶瑞利波的二维相速度图... 通过最新收集的大量高质量的地方震和远震事件的到时数据进行联合反演,我们确定了日本俯冲带约700km深度的P波和S波速度层析成像。我们还使用远震瑞利波的振幅和相速度,确定了日本及其附近海域下方20~150s周期基阶瑞利波的二维相速度图像。研究区精细三维S波层析成像可通过地方震和远震事件的S波到时,及瑞利波相速度数据进行联合反演得到。我们的反演结果揭示:一维原始速度模型中,俯冲太平洋板块和菲律宾海板块呈现明显的高速区。在板块上方的地幔楔和太平洋板块下方的地幔中存在显著的低速异常。俯冲板块和周围地幔之间速度有明显的差异,表明温度、水含量和/或部分熔融程度有显著的横向变化。地幔楔低速异常是由板块脱水作用和地幔楔拐角流造成。在日本东北太平洋板块下方显示片状的低速区,这可能反映了地幔深部热上涌以及地幔柱软流圈的俯冲作用。我们的结果表明不同的地震数据联合反演,对于得到地壳和地幔可靠的层析成像图像是非常有效和重要的。 展开更多
关键词 地震层析成像 联合反演 体波 瑞利波 日本俯冲带 地震
在线阅读 下载PDF
Strengthening in gradient TiAl alloys 被引量:1
12
作者 P.Li Y.Chen +6 位作者 x.liu X.H.Wang F.R.Chen Z.X.Qi G.Zheng H.G.Xiang G.Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第35期98-105,共8页
Gradient structure is emerging as an effective strategy to fabricate metals with remarkable mechanical performance,but have not been verified in intermetallic compounds for high-temperature applications.Through experi... Gradient structure is emerging as an effective strategy to fabricate metals with remarkable mechanical performance,but have not been verified in intermetallic compounds for high-temperature applications.Through experiments and atomic simulations,we show that a typical intermetallic TiAl alloy with gra-dient structure has a significant strengthening effect both at room temperature and high temperatures.The room-temperature compressive strength of TiAl alloys with gradient grain obtained by additive man-ufacturing is 2.57 GPa,which is∼2.7 times as strong as that with equiaxed grain.The strengthening effect is attributed to more sessile dislocations in gradient structure caused by the intersections of mul-tiple slip systems in gradient grain.More importantly,the strengthening effect is still effective at high temperatures and the compressive strength is 1.28 GPa at 750°C.The simulation results show that this strengthening effect is due to the increased Hirth dislocation at high temperatures.This study expands the applications of TiAl alloys for load-bearing structures and provides a new strategy for improving the strength of intermetallic compounds at both room temperature and high temperatures. 展开更多
关键词 TiAl alloys Strengthening Gradient grain Additive manufacturing Molecular dynamics
原文传递
定量测定北海盆地第三系沉积物补给
13
作者 x.liu W.E.Galloway 王晓钦 《国外油气勘探》 1999年第2期148-153,共6页
沉积物补给问题涉及到一系列的状态变量,这些状态变量又对地表坡度产生影响。对于整个沉积物补给和沉积物的结构(砾石、砂、泥质的比率)而言,其空间和时间上的变化都会引起沉积和侵蚀格局的改变,这可能产生或影响盆地的层序地层格架。... 沉积物补给问题涉及到一系列的状态变量,这些状态变量又对地表坡度产生影响。对于整个沉积物补给和沉积物的结构(砾石、砂、泥质的比率)而言,其空间和时间上的变化都会引起沉积和侵蚀格局的改变,这可能产生或影响盆地的层序地层格架。我们对北海盆地i 6个成因地层层序分别进行了层序颗粒体积的定量测定。所谓层序颗粒体积也就是某一地层层序中的沉积物颗粒体积(即总层序体积减去胶结物的体积和孔隙体积)。通过计算求出盆地在时间和空间上总沉积物补给的速率。每个层序的砂岩颗粒体积及砂泥比也可以计算出来。这些数据可将第三系沉积物补给划分为4个主要阶段。最重要的阶段发生在晚古新世,位于其后的足始新世和渐新世的2个次要阶段。第4阶段即从新第三纪一直持续到现在。所有这几个阶段都与物源区构造脉动相关联,而构造脉动则与北大西洋盆地的演化有关、与伴随着阿尔卑斯连续造山运动的板内应力变化有关或者与斯堪的纳维亚新生代后期的造陆上升有关。同样,主要阶段包括次级层序间的变化,这些变化与个或2个补给状态变量随时间或空间值的变化相对应。而且,大部分变化都准确反映了主要构造阶段的细节。物源区地形起伏的变化史、所形成的地形坡度及盆地中沉积量的相关变化是北海盆地新生代层序发育的主要控制因素。补给盆地的地形起伏主要是由区域性构造作用决定的。 展开更多
关键词 沉积物 地层层序 北海 第三纪 盆地
在线阅读 下载PDF
Plastic Effect on the Sliding Inception Bet ween a Cylinder and a Rigid Flat
14
作者 S.Zhang J.Huan +2 位作者 H.Song x.liu Y.G.Wei 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2019年第1期1-16,共16页
The effec ts of mat erial plasticity and local slip on the sliding inception of asperity are studied in the present work.Firstly,a semi-analytical solution is derived under the full-stick condition to analyze the effe... The effec ts of mat erial plasticity and local slip on the sliding inception of asperity are studied in the present work.Firstly,a semi-analytical solution is derived under the full-stick condition to analyze the effect of material plasticity on sliding friction.Then,a friction model with contact stiffness criterion is proposed to study the cases from partial-slip condition to full-stick condition.Finite element simulations with the provided model are used to present the friction map.The friction coefficient of full-s tick interface converges at a st able value,approxima tely 0.3.Plasticity saturation appears as the normalized contact interference u*is larger than 3.A transition mechanism from slip-dominated to yield-dominated takes place in the sliding process.The simulation results are compared with the semi-analytical solution. 展开更多
关键词 MAT erial YIELDING Local SLIP Contact stiffness criterion Finite element simulation
原文传递
Dynamic Impact of High-Density Aluminum Foam
15
作者 Q.Peng J.Xie +3 位作者 H.S.Ma X.Ling x.liu Y.G.Wei 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第2期198-214,共17页
High-density aluminum foam can provide higher stiffness and absorb more energy during the impact Obtaining the constitutive law of such foam requires tri-axial tests with very high pressure,where difficulty may arise ... High-density aluminum foam can provide higher stiffness and absorb more energy during the impact Obtaining the constitutive law of such foam requires tri-axial tests with very high pressure,where difficulty may arise because the hydrostatic pressure can reach more than 30 MPa.In this paper,instead of using tri-axial tests,we proposed three easier tests-tension,compression and shear to obtain the parameters of constitutive model(the Deshpande-Fleck model).To verify the constitutive model both statically and dynamically,we carried out addi-tional triaxial tests and direct impact tests,respectively.Based on the derived model,we performed finite element simulation to study the impact response of the present foam.By dimensional analysis,we proposed an empirical equation for a non-dimensional impact time the impact time divided by the time required for plastic wave travelling from the impact surface to the bottom surface,to det ermine the deformation charac teristic of the aluminum foam after impact.For the case with t_(d)≤1,the deformation tends to exhibit a shock-type characteristic,while for the case with t_(d)>5,the deformation tends to exhibit an upsetting-type characteristic. 展开更多
关键词 High density aluminum Foam Deshpande-Fleck model Finite element method Impact analysis Plastic wave
原文传递
Precise measurement of the χ_(c 0) resonance parameters and branching fractions ofχ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−)
16
作者 M.Ablikim M.N.Achasov +669 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin X.Y.Chai J.F.Chang G.R.Che Y.Z.Che G.Chelkov C.Chen C.H.Chen Chao Chen G.Chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denisenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia L.Ge P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu Q.P.Hu S.L.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang Y.S.Huang T.Hussain F.Hölzken N.Hüsken N.in der Wiesche J.Jackson S.Janchiv J.H.Jeong Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn L.Lavezzi T.T.Lei Z.H.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li K.L.Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li T.Y.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li X.Z.Li Y.G.Li Z.J.Li Z.Y.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin C.X.Lin D.X.Lin T.Lin B.J.Liu B.x.liu C.Liu C.x.liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu x.liu x.liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma L.R.Ma M.M.Ma Q.M.Ma R.Q.Ma T.Ma X.T.Ma X.Y.Ma Y.M.Ma F.E.Maas I.MacKay M.Maggiora S.Malde Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao X.K.Qiao J.J.Qin L.Q.Qin L.Y.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu C.F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner M.Q.Ruan S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi J.L.Shi J.Y.Shi Q.Q.Shi S.Y.Shi X.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler S.S Su Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang J.J.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang D.Y.Wang F.Wang H.J.Wang J.J.Wang J.P.Wang K.Wang L.L.Wang M.Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.H.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.H.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.Xu Y.C.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang J.H.Yang T.Yang Y.Yang Y.F.Yang Y.F.Yang Y.X.Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Junhao Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu M.C.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.S.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang P.Zhang Q.Y.Zhang R.Y.Zhang S.H.Zhang Shulei Zhang X.M.Zhang X.Y Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Yan Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao L.Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong H.Zhou J.Y.Zhou L.P.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou Z.C.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu K.S.Zhu L.Zhu L.X.Zhu S.H.Zhu T.J.Zhu W.D.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu 《Chinese Physics C》 2025年第9期1-11,共11页
By analyzing ψ(3686) data sample containing (107.7±0.6)×10^(6) events taken with the BESIII detector at the BEPCII storage ring in 2009,the χ_(c 0) resonance parameters are precisely measured using χ_(c 0... By analyzing ψ(3686) data sample containing (107.7±0.6)×10^(6) events taken with the BESIII detector at the BEPCII storage ring in 2009,the χ_(c 0) resonance parameters are precisely measured using χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) events.The mass of χ_(c 0) is determined to be M (χ_(c 0))=(3415.63±0.07±0.07±0.07)MeV/c^(2),and its full width is F (χ_(c 0))=(12.52±0.12±0.13)MeV,where the first uncertainty is statistical,the second systematic,and the third for mass comes from χ_(c 2) mass uncertainty.These measurements improve the precision of χ_(c 0) mass by a factor of four and width by one order of magnitude over the previous individual measurements,and significantly boost our knowledge about the charmonium spectrum.Together with additional (345.4±2.6)×10^(6)(3686) data events taken in 2012,the decay branching fractions of χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) are measured as well,with precision improved by a factor of three compared to previous measurements.These χ_(c 0) decay branching fractions provide important inputs for the study of glueballs. 展开更多
关键词 χ_(c 0) BESII CHARMONIUM resonance parameter branching fraction
原文传递
Search for radiative leptonic decay D^(+)→γe^(+)ν_(e) using deep learning
17
作者 M.Ablikim M.N.Achasov +712 位作者 P.Adlarson X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai M.H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin X.Y.Chai J.F.Chang G.R.Che Y.Z.Che G.Chelkov C.Chen C.H.Chen Chao Chen G.Chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen X.Y.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.K.Chen S.K.Choi X.Chu G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding Y.X.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov G.F.Fan J.J.Fan Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.Gao Y.N.Gao Y.N.Gao Y.Y.Gao S.Garbolino I.Garzia P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen J.D.Gong L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch K.D.Hao X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou H.M.Hu J.F.Hu Q.P.Hu S.L.Hu T.Hu Y.Hu Z.M.Hu G.S.Huang K.X.Huang L.Q.Huang P.Huang X.T.Huang Y.P.Huang Y.S.Huang T.Hussain N.Hüsken N.in der Wiesche J.Jackson Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.J.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn Q.Lan W.N.Lan T.T.Lei M.Lellmann T.Lenz C.Li C.Li C.Li C.H.Li C.K.Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li K.L.Li K.L.Li L.J.Li Lei Li M.H.Li M.R.Li P.L.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li T.Y.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li X.Z.Li Y.Li Y.G.Li Y.P.Li Z.J.Li Z.Y.Li C.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.B.Liao M.H.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin C.X.Lin D.X.Lin L.Q.Lin T.Lin B.J.Liu B.x.liu C.Liu C.x.liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.J.Liu K.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu W.T.Liu x.liu x.liu X.L.Liu X.Y.Liu Y.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu Y.Lu Y.H.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo J.S.Luo M.X.Luo T.Luo X.L.Luo Z.Y.Lv X.R.Lyu Y.F.Lyu Y.H.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma L.R.Ma Q.M.Ma R.Q.Ma R.Y.Ma T.Ma X.T.Ma X.Y.Ma Y.M.Ma F.E.Maas I.MacKay M.Maggiora S.Malde Q.A.Malik Y.J.Mao Z.P.Mao S.Marcello F.M.Melendi Y.H.Meng Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura F.Z.Qi H.R.Qi M.Qi S.Qian W.B.Qian C.F.Qiao J.H.Qiao J.J.Qin J.L.Qin L.Q.Qin L.Y.Qin P.B.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu C.F.Redmer A.Rivetti M.Rolo G.Rong S.S.Rong F.Rosini Ch.Rosner M.Q.Ruan S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi J.L.Shi J.Y.Shi S.Y.Shi X.Shi H.L.Song J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler S.S Su Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun Y.C.Sun Y.H.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang J.J.Tang L.F.Tang Y.A.Tang L.Y.Tao M.Tat J.X.Teng J.Y.Tian W.H.Tian Y.Tian Z.F.Tian I.Uman B.Wang B.Wang Bo Wang C.Wang Cong Wang D.Y.Wang H.J.Wang J.J.Wang K.Wang L.L.Wang L.W.Wang M.Wang M.Wang N.Y.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.H.Wang Y.J.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Yuan Wang Z.Wang Z.L.Wang Z.L.Wang Z.Q.Wang Z.Y.Wang D.H.Wei H.R.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke C.Wu J.F.Wu L.H.Wu L.J.Wu L.J.Wu Lianjie Wu S.G.Wu S.M.Wu X.Wu X.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang D.Xiao G.Y.Xiao H.Xiao Y.L.Xiao Z.J.Xiao C.Xie K.J.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu T.D.Xu W.Xu W.L.Xu X.P.Xu Y.Xu Y.Xu Y.C.Xu Z.S.Xu F.Yan H.Y.Yan L.Yan W.B.Yan W.C.Yan W.H.Yan W.P.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang J.H.Yang R.J.Yang T.Yang Y.Yang Y.F.Yang Y.H.Yang Y.Q.Yang Y.X.Yang Y.Z.Yang M.Ye M.H.Ye Z.J.Ye Junhao Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu L.Q.Yu M.C.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan H.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan X.Q.Yuan Y.Yuan Z.Y.Yuan C.X.Yue Ying Yue A.A.Zafar S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.S.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang N.Zhang P.Zhang Q.Zhang Q.Y.Zhang R.Y.Zhang S.H.Zhang Shulei Zhang X.M.Zhang X.Y Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Y.P.Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.L.Zhang Z.X.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang Zh.Zh.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao L.Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.L.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng X.R.Zheng Y.H.Zheng B.Zhong C.Zhong H.Zhou J.Q.Zhou J.Y.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu K.S.Zhu L.Zhu L.X.Zhu S.H.Zhu T.J.Zhu W.D.Zhu W.D.Zhu W.J.Zhu W.Z.Zhu Y.C.Zhu Z.A.Zhu X.Y.Zhuang J.H.Zou J.Zu 《Chinese Physics C》 2025年第8期1-15,共15页
Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limi... Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limit on its partial branching fraction for photon energies E_(γ)>10 MeV was determined to be 1.2×10^(-5)at a 90%confidence level;this excludes most current theoretical predictions.A sophisticated deep learning approach,which includes thorough validation and is based on the Transformer architecture,was implemented to efficiently distinguish the signal from massive backgrounds. 展开更多
关键词 charmed hadron radiative leptonic decay BESIl experiment deep learning
原文传递
Search for the lepton number violation decay ϕ→π^(+)π^(+)e^(−)e^(−)via J/ψ→ϕη^(*)
18
作者 M.Ablikim M.N.Achasov +627 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso M.R.An Q.An Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang G.R.Che Y.Z.Che G.Chelkov C.Chen Chao Chen G.Chen H.S.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi G.Cibinetto S.C.Coen F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Z.H.Duan P.Egorov Y.H.Fan J.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng K.Fischer M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia L.Ge P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez T.T.Han W.Y.Han X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang T.Hussain F.Hölzken N.Hüsken N.in der Wiesche J.Jackson S.Jaeger S.Janchiv Q.Ji Q.P.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi R.Kliemt O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn J.J.Lane P.Larin A.Lavania L.Lavezzi T.T.Lei Z.H.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li J.W.Li K.Li K.L.Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.X.Li S.X.Li T.Li W.D.Li W.G.Li X.H.Li X.L.Li X.Y.Li Y.G.Li Z.J.Li Z.X.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao Y.P.Liao J.Libby A.Limphirat D.X.Lin T.Lin B.J.Liu B.x.liu C.Liu C.x.liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu x.liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma X.Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Malde A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan P.Patteri Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao X.K.Qiao J.J.Qin L.Q.Qin L.Y.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner M.Q.Ruan S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi H.C.Shi J.L.Shi J.Y.Shi Q.Q.Shi X.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang C.W.Wang D.Y.Wang F.Wang H.J.Wang J.P.Wang K.Wang L.L.Wang L.W.Wang M.Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang Y.Wang Y.D.Wang Y.F.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.H.Wei F.Weidner S.P.Wen Wenzel U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.Xu Y.C.Xu Z.P.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang T.Yang Y.Yang Y.F.Yang Y.F.Yang Y.X.Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang P.Zhang Q.Y.Zhang S.H.Zhang Shulei Zhang X.D.Zhang X.M.Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.X.Zhang Yan Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao Lei Zhao M.G.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong L.P.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou J.Zhu K.Zhu K.J.Zhu L.Zhu L.X.Zhu S.H.Zhu S.Q.Zhu T.J.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu BESIII Collaboration 《Chinese Physics C》 2025年第4期1-10,共10页
Using an electron-positron collision data sample corresponding to(1.0087±0.0044)×10^(10)events collected using the BESIII detector at the BEPCII collider,we firstly search for the lepton number violation de... Using an electron-positron collision data sample corresponding to(1.0087±0.0044)×10^(10)events collected using the BESIII detector at the BEPCII collider,we firstly search for the lepton number violation decayφ→π^(+)π^(+)e^(-)e^(-)via J/ψ→φη.No obviously signals are found.The upper limit on the branching fraction ofφ→π^(+)π^(+)e^(-)e^(-)is set to be 1.3×10^(-5)at the 90%confidence level. 展开更多
关键词 Lepton number violation matter anti-matter asymmetry neutrinoless double beta decay
原文传递
Search for the lepton number violation decay ω→π^(+)π^(+)e^(-)e^(-)+c.c.
19
作者 M.Ablikim M.N.Achasov +727 位作者 P.Adlarson X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni A F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai M.H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin X.Y.Chai J.F.Chang G.R.Che Y.Z.Che C.H.Chen Chao Chen G.Chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen X.Y.Chen Y.B.Chen Y.Q.Chen Y.Q.Chen Z.Chen Z.J.Chen Z.K.Chen S.K.Choi X.Chu G.Cibinetto F.Cossio J.Cottee-Meldrum J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding Y.X.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov G.F.Fan J.J.Fan Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng L.Feng Q.X.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.Gao Y.N.Gao Y.N.Gao Y.Y.Gao Z.Gao S.Garbolino I.Garzia L.Ge P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen J.D.Gong L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch K.D.Hao X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou H.M.Hu J.F.Hu Q.P.Hu S.L.Hu T.Hu Y.Hu Z.M.Hu G.S.Huang K.X.Huang L.Q.Huang P.Huang X.T.Huang Y.P.Huang Y.S.Huang T.Hussain N.Hüsken N.in der Wiesche J.Jackson Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.J.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn Q.Lan W.N.Lan T.T.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li C.K.Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li K.L.Li K.L.Li L.J.Li Lei Li M.H.Li M.R.Li P.L.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li T.Y.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li X.Z.Li Y.Li Y.G.Li Y.P.Li Z.J.Li Z.Y.Li C.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.B.Liao M.H.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin D.X.Lin L.Q.Lin T.Lin B.J.Liu B.x.liu C.Liu C.x.liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.J.Liu K.Liu K.Liu K.Y.Liu Ke Liu L.C.Liu Lu Liu M.H.Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu W.T.Liu x.liu x.liu X.K.Liu X.L.Liu X.Y.Liu Y.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.H.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo J.S.Luo M.X.Luo T.Luo X.L.Luo Z.Y.Lv X.R.Lyu Y.F.Lyu Y.H.Lyu F.C.Ma H.L.Ma Heng Ma J.L.Ma L.L.Ma L.R.Ma Q.M.Ma R.Q.Ma R.Y.Ma T.Ma X.T.Ma X.Y.Ma Y.M.Ma F.E.Maas I.MacKay M.Maggiora S.Malde Q.A.Malik H.X.Mao Y.J.Mao Z.P.Mao S.Marcello A.Marshall F.M.Melendi Y.H.Meng Z.X.Meng G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu C.Normand S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak Y.P.Pei M.Pelizaeus H.P.Peng X.J.Peng Y.Y.Peng K.Peters K.Petridis J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.R.Qi M.Qi S.Qian W.B.Qian C.F.Qiao J.H.Qiao J.J.Qin J.L.Qin L.Q.Qin L.Y.Qin P.B.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu J.Rademacker C.F.Redmer A.Rivetti M.Rolo G.Rong S.S.Rong F.Rosini Ch.Rosner M.Q.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi J.L.Shi J.Y.Shi S.Y.Shi X.Shi H.L.Song J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song Zirong Song S.Sosio S.Spataro F.Stieler S.S Su Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun Y.C.Sun Y.H.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang J.J.Tang L.F.Tang Y.A.Tang L.Y.Tao M.Tat J.X.Teng J.Y.Tian W.H.Tian Y.Tian Z.F.Tian I.Uman B.Wang B.Wang Bo Wang C.Wang C.Wang Cong Wang D.Y.Wang H.J.Wang J.J.Wang K.Wang L.L.Wang L.W.Wang M.Wang M.Wang N.Y.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.H.Wang Y.J.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Yuan Wang Z.Wang Z.L.Wang Z.L.Wang Z.Q.Wang Z.Y.Wang D.H.Wei H.R.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke C.Wu J.F.Wu L.H.Wu L.J.Wu L.J.Wu Lianjie Wu S.G.Wu S.M.Wu X.Wu X.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang D.Xiao G.Y.Xiao H.Xiao Y.L.Xiao Z.J.Xiao C.Xie K.J.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu T.D.Xu W.Xu W.L.Xu X.P.Xu Y.Xu Y.Xu Y.C.Xu Z.S.Xu F.Yan H.Y.Yan L.Yan W.B.Yan W.C.Yan W.H.Yan W.P.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang J.H.Yang R.J.Yang T.Yang Y.Yang Y.F.Yang Y.H.Yang Y.Q.Yang Y.X.Yang Y.Z.Yang M.Ye M.H.Ye Z.J.Ye Junhao Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu L.Q.Yu M.C.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan H.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan X.Q.Yuan Y.Yuan Z.Y.Yuan C.X.Yue Ying Yue A.A.Zafar S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.H.Zhan Zhang A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.S.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang N.Zhang P.Zhang Q.Zhang Q.Y.Zhang R.Y.Zhang S.H.Zhang Shulei Zhang X.M.Zhang X.Y Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Y.P.Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.L.Zhang Z.X.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang Zh.Zh.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao L.Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.L.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng X.R.Zheng Y.H.Zheng B.Zhong C.Zhong H.Zhou J.Q.Zhou J.Y.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.X.Zhou Y.Z.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu K.S.Zhu L.Zhu L.X.Zhu S.H.Zhu T.J.Zhu W.D.Zhu W.D.Zhu W.J.Zhu W.Z.Zhu Y.C.Zhu Z.A.Zhu X.Y.Zhuang J.H.Zou J.Zu BESIII Collaboration 《Chinese Physics C》 2025年第10期15-24,共10页
Lepton number violation decayω→π^(+)π^(+)e^(-)e^(-)+c.c.is searched for via J/ψ→ωηusing a data sample of(1.0087±0.0044)×10^(10)J/ψevents collected via the BESIII detector at the BEPCII collider.No s... Lepton number violation decayω→π^(+)π^(+)e^(-)e^(-)+c.c.is searched for via J/ψ→ωηusing a data sample of(1.0087±0.0044)×10^(10)J/ψevents collected via the BESIII detector at the BEPCII collider.No significant signal is observed,and the upper limit on the branching fraction ofω→π^(+)π^(+)e^(-)e^(-)+c.c.at the 90%confidence level is determined for the first time to be 2.8×10^(-6). 展开更多
关键词 lepton number violation matter anti-matter asymmetry neutrinoless double beta decay
原文传递
Search for the leptonic decay D^(+)→e^(+)ν_(e)
20
作者 M.Ablikim M.N.Achasov +668 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin X.Y.Chai J.F.Chang G.R.Che Y.Z.Che G.Chelkov C.Chen C.H.Chen Chao Chen G.Chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia L.Ge P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu S.L.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang Y.S.Huang T.Hussain F.Hölzken N.Hüsken N.in der Wiesche J.Jackson S.Janchiv J.H.Jeong Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn J.J.Lane L.Lavezzi T.T.Lei Z.H.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li K.L.Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li X.Z.Li Y.G.Li Z.J.Li Z.Y.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin D.X.Lin T.Lin B.J.Liu B.x.liu C.Liu C.x.liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu x.liu x.liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma L.R.Ma M.M.Ma Q.M.Ma R.Q.Ma T.Ma X.T.Ma X.Y.Ma Y.M.Ma F.E.Maas I.MacKay M.Maggiora S.Malde Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao X.K.Qiao J.J.Qin L.Q.Qin L.Y.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu C.F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner M.Q.Ruan S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi H.C.Shi J.L.Shi J.Y.Shi Q.Q.Shi S.Y.Shi X.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler S.S Su Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang M.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang D.Y.Wang F.Wang H.J.Wang J.J.Wang J.P.Wang K.Wang L.L.Wang M.Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.H.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.Xu Y.C.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang T.Yang Y.Yang Y.F.Yang Y.F.Yang Y.X.Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Junhao Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu M.C.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.S.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang N.Zhang P.Zhang Q.Y.Zhang R.Y.Zhang S.H.Zhang Shulei Zhang X.M.Zhang X.Y Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Yan Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao Lei Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong H.Zhou J.Y.Zhou L.P.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou Z.C.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu K.S.Zhu L.Zhu L.X.Zhu S.H.Zhu T.J.Zhu W.D.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu 《Chinese Physics C》 2025年第6期1-10,共10页
We search for the leptonic decay D^(+)→e^(+)ν_(e)using an e+e-collision data sample with an integrated luminosity of 20.3 fb-1collected with the BESIII detector at a center-of-mass energy of 3.773 GeV.Significant si... We search for the leptonic decay D^(+)→e^(+)ν_(e)using an e+e-collision data sample with an integrated luminosity of 20.3 fb-1collected with the BESIII detector at a center-of-mass energy of 3.773 GeV.Significant signal is not observed,and an upper limit on the branching fraction of D^(+)→e^(+)ν_(e)is set as 9.7×10^(-7),at a confidence level of 90%.Our upper limit is an order of magnitude smaller than the previous limit for this decay mode. 展开更多
关键词 BESII charm physics leptonic decay
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部