The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with differen...The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with different temperatures and strain rates.A series of dynamic spalling tests with different impact velocities were conducted on thermally treated granite at different temperatures.The dynamic spalling strengths of granite with different temperatures and strain rates were determined.A model was proposed to correlate the dynamic spalling strength of granite,high temperature and strain rate.The results show that the spalling strength of granite decreases with increasing temperature.Moreover,the spalling strength of granite with a higher strain rate is larger than that with a lower strain rate.The proposed model can describe the relationship among dynamic spalling strength of granite,high temperature and strain rate.展开更多
Based on(10087±44)×10^(6) J/ψevents collected with the BESⅢdetector,we search for the lepton number violating decay J/ψ→K^(+)K^(+)e^(-)e^(-)+c.c.for the first time.The upper limit on the branching fracti...Based on(10087±44)×10^(6) J/ψevents collected with the BESⅢdetector,we search for the lepton number violating decay J/ψ→K^(+)K^(+)e^(-)e^(-)+c.c.for the first time.The upper limit on the branching fraction of this decay is set to 2.1×10^(-9)at the 90%confidence level with a frequentist method.This is the first search for J/ψdecays with a lepton number change by two,offering valuable insights into the underlying physical processes.展开更多
Basalt discriminant diagrams have been used to identify the tectonic setting of basaltic magmatism since the 1970s and have played an important role in reconstructing paleotectonic environments.However,the significant...Basalt discriminant diagrams have been used to identify the tectonic setting of basaltic magmatism since the 1970s and have played an important role in reconstructing paleotectonic environments.However,the significant increase in the availability of geochemical data has led to a reassessment of these diagrams,suggesting that some of the tectonic settings indicated by these diagrams are not accurate.Here,we use a database of global ocean island basalt(OIB),mid-ocean ridge basalt(MORB),and island arc basalt(IAB)geochemistry to propose a series of new tectonic discriminant diagrams based on the ratios of large-ion lithophile elements(LILEs)to high field strength elements(HFSEs).These new diagrams indicate that the LILE can be used to differentiate OIB,MORB,and IAB samples,meaning that LILE/HFSE ratios can discriminate between these basalts that form in different tectonic settings.Our new diagrams can correctly assign samples to OIB,MORB,and IAB categories more than 85%of the time,with the discrimination between OIB and MORB having an accuracy of slightly less than 85%.展开更多
基金supported by the Beijing Natural Science Foundation,China(Grant No.JQ20039)National Natural Science Foundation of China(Grant No.12172019).
文摘The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with different temperatures and strain rates.A series of dynamic spalling tests with different impact velocities were conducted on thermally treated granite at different temperatures.The dynamic spalling strengths of granite with different temperatures and strain rates were determined.A model was proposed to correlate the dynamic spalling strength of granite,high temperature and strain rate.The results show that the spalling strength of granite decreases with increasing temperature.Moreover,the spalling strength of granite with a higher strain rate is larger than that with a lower strain rate.The proposed model can describe the relationship among dynamic spalling strength of granite,high temperature and strain rate.
基金supported in part by National Key R&D Program of China under Contracts Nos.2023YFA1606000,2023YFA1606704National Natural Science Foundation of China(NSFC)under Contracts Nos.12035009,11635010,11935015,11935016,11935018,12025502,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramCAS under Contract No.YSBR-101100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyGerman Research Foundation DFG under Contract No.FOR5327Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation under Contracts Nos.2021.0174,2021.0299Ministry of Development of Turkey under Contract No.DPT2006K-120470National Research Foundation of Korea under Contract No.NRF-2022R1A2C1092335National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional DevelopmentResearch and Innovation of Thailand under Contract No.B50G670107Polish National Science Centre under Contract No.2024/53/B/ST2/00975Swedish Research Council under Contract No.2019.04595U.S.Department of Energy under Contract No.DE-FG02-05ER41374。
文摘Based on(10087±44)×10^(6) J/ψevents collected with the BESⅢdetector,we search for the lepton number violating decay J/ψ→K^(+)K^(+)e^(-)e^(-)+c.c.for the first time.The upper limit on the branching fraction of this decay is set to 2.1×10^(-9)at the 90%confidence level with a frequentist method.This is the first search for J/ψdecays with a lepton number change by two,offering valuable insights into the underlying physical processes.
基金Technological Leading Talents Program of Yunnan Province[grant number 2013HA001]the National Natural Science Foundation of China[grant number 41502076]+1 种基金the State Key Laboratory of Lithospheric Evolution,Institute of Geology and Geophysics,Chinese Academy of Sciences program[grant number 81300001]the China Geological Survey[grant number 12120114013701].
文摘Basalt discriminant diagrams have been used to identify the tectonic setting of basaltic magmatism since the 1970s and have played an important role in reconstructing paleotectonic environments.However,the significant increase in the availability of geochemical data has led to a reassessment of these diagrams,suggesting that some of the tectonic settings indicated by these diagrams are not accurate.Here,we use a database of global ocean island basalt(OIB),mid-ocean ridge basalt(MORB),and island arc basalt(IAB)geochemistry to propose a series of new tectonic discriminant diagrams based on the ratios of large-ion lithophile elements(LILEs)to high field strength elements(HFSEs).These new diagrams indicate that the LILE can be used to differentiate OIB,MORB,and IAB samples,meaning that LILE/HFSE ratios can discriminate between these basalts that form in different tectonic settings.Our new diagrams can correctly assign samples to OIB,MORB,and IAB categories more than 85%of the time,with the discrimination between OIB and MORB having an accuracy of slightly less than 85%.