Angle-resolved photoemission spectroscopy(ARPES)has become a cornerstone technique for elucidating the electronic structures of emergent quantum materials.Among these,kagome materials—distinguished by their two-dimen...Angle-resolved photoemission spectroscopy(ARPES)has become a cornerstone technique for elucidating the electronic structures of emergent quantum materials.Among these,kagome materials—distinguished by their two-dimensional lattice of corner-sharing triangles—provide a fertile ground for investigating exotic quantum phenomena,driven by geometric frustration,electronic correlation,and topology.In this review,we present an overview of recent ARPES studies on transition-metal kagome materials.We first outline the fundamental features of their electronic structures,including van Hove singularities,Dirac points,and flat bands,and discuss the novel quantum states that arise from many-body interactions within the kagome lattice.We then highlight key ARPES investigations into these unique electronic structures,detailing their manifestation and associated quantum states in representative kagome materials.Finally,we offer a forward-looking perspective on the potential of ARPES to uncover new quantum phenomena and its broader implications for the study of underlying physics in kagome materials.展开更多
The doping evolution of the nodal electron dynamics in the trilayer cuprate superconductor Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ)(Bi2223)is investigated using high-resolution laser-based angle-resolved photoemission spectr...The doping evolution of the nodal electron dynamics in the trilayer cuprate superconductor Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ)(Bi2223)is investigated using high-resolution laser-based angle-resolved photoemission spectroscopy(ARPES).Bi2223single crystals with different doping levels are prepared by controlled annealing,which cover the underdoped,optimallydoped and overdoped regions.The electronic phase diagram of Bi2223 is established which describes the Tcdependence on the sample doping level.The doping dependence of the nodal Fermi momentum for the outer(OP)and inner(IP)CuO_(2)planes is determined.Charge distribution imbalance between the OP and IP CuO_(2)planes is quantified,showing enhanced disparity with increasing doping.Nodal band dispersions demonstrate a prominent kink at~94 meV in the IP band,attributed to the unique Cu coordination in the IP plane,while a weaker~60 meV kink is observed in the OP band.The nodal Fermi velocity of both OP and IP bands is nearly constant at~1.62 eV·A independent of doping.These results provide important information to understand the origin of high Tcand superconductivity mechanism in high temperature cuprate superconductors.展开更多
By partially doping Pb to effectively suppress the superstructure in single-layered cuprate Bi_2Sr_2CuO_(6+δ)(Pb-Bi2201) and annealing them in vacuum or in high pressure oxygen atmosphere, a series of high quality Pb...By partially doping Pb to effectively suppress the superstructure in single-layered cuprate Bi_2Sr_2CuO_(6+δ)(Pb-Bi2201) and annealing them in vacuum or in high pressure oxygen atmosphere, a series of high quality Pb-Bi2201 single crystals are obtained with T_c covering from 17 K to non-superconducting in the overdoped region. High resolution angle resolved photoemission spectroscopy measurements are carried out on these samples to investigate the evolution of the Fermi surface topology with doping in the normal state. Clear and complete Fermi surfaces are observed and quantitatively analyzed in all of these overdoped Pb-Bi2201 samples. A Lifshitz transition from holelike Fermi surface to electron-like Fermi surface with increasing doping is observed at a doping level of ~0.35. This transition coincides with the change that the sample undergoes superconducting-to-non-superconducting states.Our results reveal the emergence of an electron-like Fermi surface and the existence of a Lifshitz transition in heavily overdoped Bi2201 samples. This provides important information in understanding the connection between the disappearance of superconductivity and the Lifshitz transition in the overdoped region.展开更多
Magnetic topological materials have attracted much attention due to the correlation between topology and magnetism.Recent studies suggest that EuCd_(2)As_(2) is an antiferromagnetic topological material.Here by carryi...Magnetic topological materials have attracted much attention due to the correlation between topology and magnetism.Recent studies suggest that EuCd_(2)As_(2) is an antiferromagnetic topological material.Here by carrying out thorough magnetic,electrical and thermodynamic property measurements,we discover a long-time relaxation of the magnetic susceptibility in EuCd_(2)As_(2).The(001)in-plane magnetic susceptibility at 5 K is found to continuously increase up to∼10%over the time of∼14 hours.The magnetic relaxation is anisotropic and strongly depends on the temperature and the applied magnetic field.These results will stimulate further theoretical and experimental studies to understand the origin of the relaxation process and its effect on the electronic structure and physical properties of the magnetic topological materials.展开更多
The pseudogap state is one of the most enigmatic characteristics in the anomalous normal state properties of the high temperature cuprate superconductors. A central issue is to reveal whether there is a symmetry break...The pseudogap state is one of the most enigmatic characteristics in the anomalous normal state properties of the high temperature cuprate superconductors. A central issue is to reveal whether there is a symmetry breaking and which symmetries are broken across the pseudogap transition. By performing high resolution laser-based angle-resolved photoemission measurements on the optimally-doped Bi_(2)Sr_(1.6)La_(0.4)CuO_(6+δ) superconductor, we report the observations of the particle-hole symmetry conservation in both the superconducting state and the pseudogap state along the entire Fermi surface. These results provide key insights in understanding the nature of the pseudogap and its relation with high temperature superconductivity.展开更多
Research of infinite-layer nickelates has unveiled a broken translation symmetry,which has sparked significant interest in its root,its relationship to superconductivity,and its comparison to charge order in cuprates....Research of infinite-layer nickelates has unveiled a broken translation symmetry,which has sparked significant interest in its root,its relationship to superconductivity,and its comparison to charge order in cuprates.In this study,resonant x-ray scattering measurements were performed on thin films of infinite-layer PrNiO_(2+δ).The results show significant differences in the superlattice reflection at the Ni L_(3) absorption edge compared to that at the Pr M_(5) resonance in their dependence on energy,temperature,and local symmetry.These differences point to two distinct charge orders,although they share the same in-plane wavevectors.It is suggested that these dissimilarities could be linked to the excess oxygen dopants,given that the resonant reflections were observed in an incompletely reduced PrNiO_(2+δ)film.Furthermore,azimuthal analysis indicates that the oxygen ligands likely play a crucial role in the charge modulation revealed at the Ni L_(3) resonance.展开更多
Currently,IEC/TC90 is working on standardizing the method for measuring critical current(Ic)in superconducting cables.At the end of 2020,an international round robin test(RRT)was organized,in which five Chinese instit...Currently,IEC/TC90 is working on standardizing the method for measuring critical current(Ic)in superconducting cables.At the end of 2020,an international round robin test(RRT)was organized,in which five Chinese institutions participated,and four accomplished the test.The electric-field versus current(E-I)curves obtained by each institution are highly repeatable.Those obtained by different institutions are nearly identical after appropriate curve averaging,indicating high reproducibility,except the last participant's inner core curves.The discrepancy was later determined to be the result of sample cable damage.After excluding highly deviated data,it is determined that the maximum relative standard uncertainty in I_(c) is 0.7%,and the maximum relative standard uncertainty in n-value is 12.8%.The I_(c)values are comparable to Japan's domestic RRT results,but the n-values are significantly different.The test results support the DC four-terminal method as a recommended test method,with a target relative uncertainty of less than 2%for the Ic value.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12488201,12074411,12374066,12374154,and 12494593)the National Key Research and Development Program of China(Grant No.2022YFA1403900,2021YFA1401800,2022YFA1604200,2023YFA1406002,2024YFA1408301,and 2024YFA1400026)+3 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDB25000000 and XDB33000000)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301800)the Youth Innovation Promotion Association of CAS(Grant No.Y2021006)Synergetic Extreme Condition User Facility(SECUF).
文摘Angle-resolved photoemission spectroscopy(ARPES)has become a cornerstone technique for elucidating the electronic structures of emergent quantum materials.Among these,kagome materials—distinguished by their two-dimensional lattice of corner-sharing triangles—provide a fertile ground for investigating exotic quantum phenomena,driven by geometric frustration,electronic correlation,and topology.In this review,we present an overview of recent ARPES studies on transition-metal kagome materials.We first outline the fundamental features of their electronic structures,including van Hove singularities,Dirac points,and flat bands,and discuss the novel quantum states that arise from many-body interactions within the kagome lattice.We then highlight key ARPES investigations into these unique electronic structures,detailing their manifestation and associated quantum states in representative kagome materials.Finally,we offer a forward-looking perspective on the potential of ARPES to uncover new quantum phenomena and its broader implications for the study of underlying physics in kagome materials.
基金supported by the National Natural Science Foundation of China(Grant Nos.12488201 by X.J.Z.,12374066 by L.Z.,and 12374154 by X.T.L.)the National Key Research and Development Program of China(Grant Nos.2021YFA1401800 by X.J.Z.,2022YFA1604200 by L.Z.,2022YFA1403900 by G.D.L.and 2023YFA1406000by X.T.L.)+3 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB25000000by X.J.Z.)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301800 by X.J.Z.)the Youth Innovation Promotion Association of CAS(Grant No.Y2021006 by L.Z.)the Synergetic Extreme Condition User Facility(SECUF)。
文摘The doping evolution of the nodal electron dynamics in the trilayer cuprate superconductor Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ)(Bi2223)is investigated using high-resolution laser-based angle-resolved photoemission spectroscopy(ARPES).Bi2223single crystals with different doping levels are prepared by controlled annealing,which cover the underdoped,optimallydoped and overdoped regions.The electronic phase diagram of Bi2223 is established which describes the Tcdependence on the sample doping level.The doping dependence of the nodal Fermi momentum for the outer(OP)and inner(IP)CuO_(2)planes is determined.Charge distribution imbalance between the OP and IP CuO_(2)planes is quantified,showing enhanced disparity with increasing doping.Nodal band dispersions demonstrate a prominent kink at~94 meV in the IP band,attributed to the unique Cu coordination in the IP plane,while a weaker~60 meV kink is observed in the OP band.The nodal Fermi velocity of both OP and IP bands is nearly constant at~1.62 eV·A independent of doping.These results provide important information to understand the origin of high Tcand superconductivity mechanism in high temperature cuprate superconductors.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0300300 and 2017YFA0302900the Strategic Priority Research Program(B)of Chinese Academy of Sciences under Grant Nos XDB07020300and XDB25000000+2 种基金the National Basic Research Program of China under Grant No 2015CB921300the National Natural Science Foundation of China under Grant Nos 11334010 and 11534007the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2017013
文摘By partially doping Pb to effectively suppress the superstructure in single-layered cuprate Bi_2Sr_2CuO_(6+δ)(Pb-Bi2201) and annealing them in vacuum or in high pressure oxygen atmosphere, a series of high quality Pb-Bi2201 single crystals are obtained with T_c covering from 17 K to non-superconducting in the overdoped region. High resolution angle resolved photoemission spectroscopy measurements are carried out on these samples to investigate the evolution of the Fermi surface topology with doping in the normal state. Clear and complete Fermi surfaces are observed and quantitatively analyzed in all of these overdoped Pb-Bi2201 samples. A Lifshitz transition from holelike Fermi surface to electron-like Fermi surface with increasing doping is observed at a doping level of ~0.35. This transition coincides with the change that the sample undergoes superconducting-to-non-superconducting states.Our results reveal the emergence of an electron-like Fermi surface and the existence of a Lifshitz transition in heavily overdoped Bi2201 samples. This provides important information in understanding the connection between the disappearance of superconductivity and the Lifshitz transition in the overdoped region.
基金Supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0300600 and 2018YFA0305600)the National Natural Science Foundation of China(Grant No.11974404)+1 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB33000000)the Youth Innovation Promotion Association of CAS(Grant No.2017013).
文摘Magnetic topological materials have attracted much attention due to the correlation between topology and magnetism.Recent studies suggest that EuCd_(2)As_(2) is an antiferromagnetic topological material.Here by carrying out thorough magnetic,electrical and thermodynamic property measurements,we discover a long-time relaxation of the magnetic susceptibility in EuCd_(2)As_(2).The(001)in-plane magnetic susceptibility at 5 K is found to continuously increase up to∼10%over the time of∼14 hours.The magnetic relaxation is anisotropic and strongly depends on the temperature and the applied magnetic field.These results will stimulate further theoretical and experimental studies to understand the origin of the relaxation process and its effect on the electronic structure and physical properties of the magnetic topological materials.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11888101, 11922414 and 11974404)the National Key Research and Development Program of China (Grant Nos. 2021YFA1401800, 2017YFA0302900, 2018YFA0305602, and 2018YFA0704200)+3 种基金the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB25000000 and XDB33000000)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2021006)the Synergetic Extreme Condition User Facility (SECUF)the Research Program of Beijing Academy of Quantum Information Sciences (Grant No. Y18G06)。
文摘The pseudogap state is one of the most enigmatic characteristics in the anomalous normal state properties of the high temperature cuprate superconductors. A central issue is to reveal whether there is a symmetry breaking and which symmetries are broken across the pseudogap transition. By performing high resolution laser-based angle-resolved photoemission measurements on the optimally-doped Bi_(2)Sr_(1.6)La_(0.4)CuO_(6+δ) superconductor, we report the observations of the particle-hole symmetry conservation in both the superconducting state and the pseudogap state along the entire Fermi surface. These results provide key insights in understanding the nature of the pseudogap and its relation with high temperature superconductivity.
基金supported by the National Natural Science Foundation of China(Grant No.12074411)the National Key Research and Development Program of China(Grant Nos.2022YFA1403900 and 2021YFA1401800)+1 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB25000000)the Swiss National Science Foundation(Grant No.200021_188564)。
文摘Research of infinite-layer nickelates has unveiled a broken translation symmetry,which has sparked significant interest in its root,its relationship to superconductivity,and its comparison to charge order in cuprates.In this study,resonant x-ray scattering measurements were performed on thin films of infinite-layer PrNiO_(2+δ).The results show significant differences in the superlattice reflection at the Ni L_(3) absorption edge compared to that at the Pr M_(5) resonance in their dependence on energy,temperature,and local symmetry.These differences point to two distinct charge orders,although they share the same in-plane wavevectors.It is suggested that these dissimilarities could be linked to the excess oxygen dopants,given that the resonant reflections were observed in an incompletely reduced PrNiO_(2+δ)film.Furthermore,azimuthal analysis indicates that the oxygen ligands likely play a crucial role in the charge modulation revealed at the Ni L_(3) resonance.
基金the Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDB 2500.
文摘Currently,IEC/TC90 is working on standardizing the method for measuring critical current(Ic)in superconducting cables.At the end of 2020,an international round robin test(RRT)was organized,in which five Chinese institutions participated,and four accomplished the test.The electric-field versus current(E-I)curves obtained by each institution are highly repeatable.Those obtained by different institutions are nearly identical after appropriate curve averaging,indicating high reproducibility,except the last participant's inner core curves.The discrepancy was later determined to be the result of sample cable damage.After excluding highly deviated data,it is determined that the maximum relative standard uncertainty in I_(c) is 0.7%,and the maximum relative standard uncertainty in n-value is 12.8%.The I_(c)values are comparable to Japan's domestic RRT results,but the n-values are significantly different.The test results support the DC four-terminal method as a recommended test method,with a target relative uncertainty of less than 2%for the Ic value.