The Ti-48Al alloy was pack siliconized with 15%Si+85%Al2O3. The microstructure of the siliconized coating on the TiAl-based alloy was analyzed and its effect on oxidation resistance was investigated. The specimens bef...The Ti-48Al alloy was pack siliconized with 15%Si+85%Al2O3. The microstructure of the siliconized coating on the TiAl-based alloy was analyzed and its effect on oxidation resistance was investigated. The specimens before and after cycle oxidation were examined by XRD and SEM equipped with XEDS. The results showed that the coating is composed of a thin Al2O3 outer layer and a composite inner layer of Ti5Si3 with an appropriate amount of Al2O3 dispersed in. Cycle oxidation tests showed that the high temperature oxidation resistance of TiAl-based alloy was greatly improved by forming such composite coating. No spaliation and crack happened and the weight gain was very small after cycle oxidation at 900℃ for 314h.展开更多
MnGa films were grown by magnetron sputtering on thermally oxidized Si(Si/SiO2) and glass substrates. Films grown on single-crystal Si(100) substrate with different underlayers were prepared for comparison. It is ...MnGa films were grown by magnetron sputtering on thermally oxidized Si(Si/SiO2) and glass substrates. Films grown on single-crystal Si(100) substrate with different underlayers were prepared for comparison. It is found that the Si/SiO2 substrate is more suitable for growing high-coercivity MnGa films than the glass substrate, which is the result of the isolated-island-like growth. A coercivity of 9.7 kOe can be achieved for the 10 nm MnGa films grown on Si/SiO2 substrate at substrate temperature TS of 450 °C.Optimized experimental conditions are specified by changing the thickness of the MnGa films and the temperature of the substrates.展开更多
By inserting an ultrathin Pt layer at Co/Ru interface,we established antiferromagnetic coupling with outof-plane magnetization in Co/Ru/Co film stacks fabricated by sputtering.To achieve configuration suitable for fre...By inserting an ultrathin Pt layer at Co/Ru interface,we established antiferromagnetic coupling with outof-plane magnetization in Co/Ru/Co film stacks fabricated by sputtering.To achieve configuration suitable for free layer,the magnetic properties of the stacks have been investigated by changing the thickness of Co,Ru and Pt layers using an orthogonal wedges technique.It is found that magnetic properties for upper Co layer thinner than 0.5 nm are sensitive to little change in Ru thickness.Improving continuity of upper Co layer by slightly increasing the thickness can effectively increase the squareness of minor loop.The switching magnetization of synthetic antiferromagnetic(SAF) structure is achieved by DC current under an in-plane static magnetic field of ± 500 Oe.This structure is very promising for free layer in spintronic application.展开更多
The Er Al2@Al2O3 nanocapsules with Er Al2core and Al2O3 shell were synthesized by modified arc-charge technique.The typical core-shell structure of the nanocapsules was confirmed by high resolution transmission electr...The Er Al2@Al2O3 nanocapsules with Er Al2core and Al2O3 shell were synthesized by modified arc-charge technique.The typical core-shell structure of the nanocapsules was confirmed by high resolution transmission electron microscopy and X-ray photoelectron spectroscopy.Transmission electron microscopy analysis shows the irregular sphere of the nanocapules with an average diameter of 26 nm.Magnetic investigation revealed the Curie temperature of Er Al2@Al2O3 nanocapsules at 20 K and the typical superparamagnetic behavior between blocking temperature and Curie temperature.Based on the blocking temperature and average diameter,the magnetocrystalline anisotropy constant of Er Al2@Al2O3nanocapsules was estimated to illustrate the magnetic contribution to the-SM.The large-SMof 14.25 J/(kg K)was obtained under 50 k Oe at 5 K.A vital parameter β was introduced in the present work to scale the optimized magnetic characteristics and the optimized mechanism was discussed in detail according to classical superparamagnetic theory.The results demonstrate that the optimal-SMwill be obtained when the magnetic parameter β is close to the theoretical coefficient.展开更多
The effects of the hydrogenation-disproportionation-desorption-recombination (HDDR) process on the structure and the magnetic properties of the mechanical alloying (MA) prepared Nd8Fe84 Ti8 alloy and its nitride count...The effects of the hydrogenation-disproportionation-desorption-recombination (HDDR) process on the structure and the magnetic properties of the mechanical alloying (MA) prepared Nd8Fe84 Ti8 alloy and its nitride counterpart have been studied in detail. It has been found that Nd(Fe, Ti)12Hδ is formed in the temperature range from 300 to 550°℃. The disproportionation is ready to start at 550°℃ and is complete at 960°℃.The desorption and the recombination are almost synchronized. The phase of Nd(Fe,Ti)7 is formed at 750°℃ during the HDDR treatment. With increasing temperature of HDDR process, the metastable structure of TbCu7 type is gradually transformed into the structure of ThMn12 type. The intrinsic coercivity and the maximum magnetic energy product increase with increasing temperature of HDDR process.展开更多
文摘The Ti-48Al alloy was pack siliconized with 15%Si+85%Al2O3. The microstructure of the siliconized coating on the TiAl-based alloy was analyzed and its effect on oxidation resistance was investigated. The specimens before and after cycle oxidation were examined by XRD and SEM equipped with XEDS. The results showed that the coating is composed of a thin Al2O3 outer layer and a composite inner layer of Ti5Si3 with an appropriate amount of Al2O3 dispersed in. Cycle oxidation tests showed that the high temperature oxidation resistance of TiAl-based alloy was greatly improved by forming such composite coating. No spaliation and crack happened and the weight gain was very small after cycle oxidation at 900℃ for 314h.
基金financially supported by the National Natural Science Foundation of China (Nos. 51590883, 51471167, 51271179 and 51571194)the project of Chinese Academy of Sciences with grant number KJZD-EW-M05-3supported by a Joint Research Project from Ministry of Science, ICT and Future Planning/Korea Research Council for Industrial Science and Technology
文摘MnGa films were grown by magnetron sputtering on thermally oxidized Si(Si/SiO2) and glass substrates. Films grown on single-crystal Si(100) substrate with different underlayers were prepared for comparison. It is found that the Si/SiO2 substrate is more suitable for growing high-coercivity MnGa films than the glass substrate, which is the result of the isolated-island-like growth. A coercivity of 9.7 kOe can be achieved for the 10 nm MnGa films grown on Si/SiO2 substrate at substrate temperature TS of 450 °C.Optimized experimental conditions are specified by changing the thickness of the MnGa films and the temperature of the substrates.
基金supported by the National Natural Science Foundation of China under grants Nos.51590883,51331006 and51471167a project of the Chinese Academy of Sciences with grant No.KJZD-EW-M05-3
文摘By inserting an ultrathin Pt layer at Co/Ru interface,we established antiferromagnetic coupling with outof-plane magnetization in Co/Ru/Co film stacks fabricated by sputtering.To achieve configuration suitable for free layer,the magnetic properties of the stacks have been investigated by changing the thickness of Co,Ru and Pt layers using an orthogonal wedges technique.It is found that magnetic properties for upper Co layer thinner than 0.5 nm are sensitive to little change in Ru thickness.Improving continuity of upper Co layer by slightly increasing the thickness can effectively increase the squareness of minor loop.The switching magnetization of synthetic antiferromagnetic(SAF) structure is achieved by DC current under an in-plane static magnetic field of ± 500 Oe.This structure is very promising for free layer in spintronic application.
基金financially supported by the National Natural Science Foundation of China (Nos.51271178,51571195,51331006,51590883)
文摘The Er Al2@Al2O3 nanocapsules with Er Al2core and Al2O3 shell were synthesized by modified arc-charge technique.The typical core-shell structure of the nanocapsules was confirmed by high resolution transmission electron microscopy and X-ray photoelectron spectroscopy.Transmission electron microscopy analysis shows the irregular sphere of the nanocapules with an average diameter of 26 nm.Magnetic investigation revealed the Curie temperature of Er Al2@Al2O3 nanocapsules at 20 K and the typical superparamagnetic behavior between blocking temperature and Curie temperature.Based on the blocking temperature and average diameter,the magnetocrystalline anisotropy constant of Er Al2@Al2O3nanocapsules was estimated to illustrate the magnetic contribution to the-SM.The large-SMof 14.25 J/(kg K)was obtained under 50 k Oe at 5 K.A vital parameter β was introduced in the present work to scale the optimized magnetic characteristics and the optimized mechanism was discussed in detail according to classical superparamagnetic theory.The results demonstrate that the optimal-SMwill be obtained when the magnetic parameter β is close to the theoretical coefficient.
文摘The effects of the hydrogenation-disproportionation-desorption-recombination (HDDR) process on the structure and the magnetic properties of the mechanical alloying (MA) prepared Nd8Fe84 Ti8 alloy and its nitride counterpart have been studied in detail. It has been found that Nd(Fe, Ti)12Hδ is formed in the temperature range from 300 to 550°℃. The disproportionation is ready to start at 550°℃ and is complete at 960°℃.The desorption and the recombination are almost synchronized. The phase of Nd(Fe,Ti)7 is formed at 750°℃ during the HDDR treatment. With increasing temperature of HDDR process, the metastable structure of TbCu7 type is gradually transformed into the structure of ThMn12 type. The intrinsic coercivity and the maximum magnetic energy product increase with increasing temperature of HDDR process.