Many properties of Mg matrix composites are mutually incompatible,and even completely repel each other.Here,we constructed a magnetic layered component in Mg matrix composite reinforced with reduced graphene oxide(RGO...Many properties of Mg matrix composites are mutually incompatible,and even completely repel each other.Here,we constructed a magnetic layered component in Mg matrix composite reinforced with reduced graphene oxide(RGO)through an in-situ interface reaction strategy,achieving simultaneous improvement in the strength,ductility,and electromagnetic shielding performance of the composite.The magnetic component is generated by the in-situ reaction of Fe_(2)O_(3)nanoparticles encapsulated on RGO with the Mg matrix.The superior strength-ductility synergy originates from layered heterostructure,which actives non-basal dislocations and enables a stable microcrackmultiplication.The heterogeneous layered structure strengthens the multi-level reflection of electromagnetic wave(EMW)inside the composite.The in-situ interfacial reaction introduces abundant of heterogeneous interfaces into the composites,which improves the interfacial polarization loss ability of the composites.The magnetic RGO layer can provide shape anisotropy that breaks the Snoek limit,thus improving the magnetic loss ability of composite in high-frequency electromagnetic fields.The synergistic action of multiple EMW loss mechanisms improves the electromagnetic shielding performance of composite.The current study emphasizes the influence of interface structure on the mechanical and functional properties of composites,and presents a promising approach for the development of structure/functional integrated composites with enhanced properties.展开更多
The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of...The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.展开更多
CoFe_(2)O_(4)/Pb(Zr_(0.53)Ti_(0.47))TO_(3)(abbreviated as CFO/PZT)multiferroic composite thick films were successfully fabricated on alumina substrate with gold bottom electrode by screen printing method at a low-sint...CoFe_(2)O_(4)/Pb(Zr_(0.53)Ti_(0.47))TO_(3)(abbreviated as CFO/PZT)multiferroic composite thick films were successfully fabricated on alumina substrate with gold bottom electrode by screen printing method at a low-sintering temperature.The processing included the modi fication and dispersion of ferromagnetic CFO powder and ferroelectric PZT powder,the preparation of uniform pastes,and the selection of proper annealing temperature for composite thick films.Transmission electron microscopic pictures(TEM)indicated the submicron meter of particles size for both CFO and PZT particles.After annealing at 900℃ for 1 h in air,tape test con firmed the quality of multiferroic thick films as well as pure CFO and PZT films.X-ray diffraction(XRD)showed a coexistence of CFO and PZT phases;furthermore,a smooth surface was observed through scanning electron microscopic(SEM)pictures along with the sharp cross-sectional picture,indicative of 100m of film thickness.Ferromagnetic and ferroelectric properties were observed in CFO/PZT films simultaneously at room temperature.Compared with the reported CFO/PZT multiferrroic thin films,the present ferromagnetic property was closing to that of the chemical solgel synthesized film and even that from the physical pulsed laser deposition technique.However,the ferroelectric property showed a degenerated behavior,possible reasons for this was discussed and further optimization was also proposed for the potential multifunctional application.展开更多
基金supported by Yunnan Major Scientific and Technological Projects(grant No 202202AG050004,202202AG050011)the National Natural Science Foundation of China(grant No 52061021)Yunnan Industrial Technology Innovation Talent Project.
文摘Many properties of Mg matrix composites are mutually incompatible,and even completely repel each other.Here,we constructed a magnetic layered component in Mg matrix composite reinforced with reduced graphene oxide(RGO)through an in-situ interface reaction strategy,achieving simultaneous improvement in the strength,ductility,and electromagnetic shielding performance of the composite.The magnetic component is generated by the in-situ reaction of Fe_(2)O_(3)nanoparticles encapsulated on RGO with the Mg matrix.The superior strength-ductility synergy originates from layered heterostructure,which actives non-basal dislocations and enables a stable microcrackmultiplication.The heterogeneous layered structure strengthens the multi-level reflection of electromagnetic wave(EMW)inside the composite.The in-situ interfacial reaction introduces abundant of heterogeneous interfaces into the composites,which improves the interfacial polarization loss ability of the composites.The magnetic RGO layer can provide shape anisotropy that breaks the Snoek limit,thus improving the magnetic loss ability of composite in high-frequency electromagnetic fields.The synergistic action of multiple EMW loss mechanisms improves the electromagnetic shielding performance of composite.The current study emphasizes the influence of interface structure on the mechanical and functional properties of composites,and presents a promising approach for the development of structure/functional integrated composites with enhanced properties.
基金supported by the National Key R&D Program of China under Contract No.2022YFA1602200the International Partnership Program of the Chineses Academy of Sciences under Grant No.211134KYSB20200057the STCF Key Technology Research and Development Project.
文摘The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.
基金This work was supported by the tier-2 research grant of ARC 04/06 funded by Ministry of Education,Singapore.
文摘CoFe_(2)O_(4)/Pb(Zr_(0.53)Ti_(0.47))TO_(3)(abbreviated as CFO/PZT)multiferroic composite thick films were successfully fabricated on alumina substrate with gold bottom electrode by screen printing method at a low-sintering temperature.The processing included the modi fication and dispersion of ferromagnetic CFO powder and ferroelectric PZT powder,the preparation of uniform pastes,and the selection of proper annealing temperature for composite thick films.Transmission electron microscopic pictures(TEM)indicated the submicron meter of particles size for both CFO and PZT particles.After annealing at 900℃ for 1 h in air,tape test con firmed the quality of multiferroic thick films as well as pure CFO and PZT films.X-ray diffraction(XRD)showed a coexistence of CFO and PZT phases;furthermore,a smooth surface was observed through scanning electron microscopic(SEM)pictures along with the sharp cross-sectional picture,indicative of 100m of film thickness.Ferromagnetic and ferroelectric properties were observed in CFO/PZT films simultaneously at room temperature.Compared with the reported CFO/PZT multiferrroic thin films,the present ferromagnetic property was closing to that of the chemical solgel synthesized film and even that from the physical pulsed laser deposition technique.However,the ferroelectric property showed a degenerated behavior,possible reasons for this was discussed and further optimization was also proposed for the potential multifunctional application.