期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
STCF conceptual design report (Volume 1): Physics & detector 被引量:5
1
作者 M.Achasov X.C.Ai +457 位作者 L.P.An R.Aliberti Q.An X.Z.Bai Y.Bai O.Bakina A.Barnyakov V.Blinov V.Bobrovnikov D.Bodrov A.Bogomyagkov A.Bondar I.Boyko Z.H.Bu F.M.Cai H.Cai J.J.Cao Q.H.Cao x.cao Z.Cao Q.Chang K.T.Chao D.Y.Chen H.Chen H.X.Chen J.F.Chen K.Chen L.L.Chen P.Chen S.L.Chen S.M.Chen S.Chen S.P.Chen W.Chen X.Chen X.F.Chen X.R.Chen Y.Chen Y.Q.Chen H.Y.Cheng J.Cheng S.Cheng T.G.Cheng J.P.Dai L.Y.Dai X.C.Dai D.Dedovich A.Denig I.Denisenko J.M.Dias D.Z.Ding L.Y.Dong W.H.Dong V.Druzhinin D.S.Du Y.J.Du Z.G.Du L.M.Duan D.Epifanov Y.L.Fan S.S.Fang Z.J.Fang G.Fedotovich C.Q.Feng X.Feng Y.T.Feng J.L.Fu J.Gao Y.N.Gao P.S.Ge C.Q.Geng L.S.Geng A.Gilman L.Gong T.Gong B.Gou W.Gradl J.L.Gu A.Guevara L.C.Gui A.Q.Guo F.K.Guo J.C.Guo J.Guo Y.P.Guo Z.H.Guo A.Guskov K.L.Han L.Han M.Han X.Q.Hao J.B.He S.Q.He X.G.He Y.L.He Z.B.He Z.X.Heng B.L.Hou T.J.Hou Y.R.Hou C.Y.Hu H.M.Hu K.Hu R.J.Hu W.H.Hu X.H.Hu Y.C.Hu J.Hua G.S.Huang J.S.Huang M.Huang Q.Y.Huang W.Q.Huang X.T.Huang X.J.Huang Y.B.Huang Y.S.Huang N.Hüsken V.Ivanov Q.P.Ji J.J.Jia S.Jia Z.K.Jia H.B.Jiang J.Jiang S.Z.Jiang J.B.Jiao Z.Jiao H.J.Jing X.L.Kang X.S.Kang B.C.Ke M.Kenzie A.Khoukaz I.Koop E.Kravchenko A.Kuzmin Y.Lei E.Levichev C.H.Li C.Li D.Y.Li F.Li G.Li G.Li H.B.Li H.Li H.N.Li H.J.Li H.L.Li J.M.Li J.Li L.Li L.Li L.Y.Li N.Li P.R.Li R.H.Li S.Li T.Li W.J.Li X.Li X.H.Li X.Q.Li X.H.Li Y.Li Y.Y.Li Z.J.Li H.Liang J.H.Liang Y.T.Liang G.R.Liao L.Z.Liao Y.Liao C.X.Lin D.X.Lin X.S.Lin B.J.Liu C.W.Liu D.Liu F.Liu G.M.Liu H.B.Liu J.Liu J.J.Liu J.B.Liu K.Liu K.Y.Liu K.Liu L.Liu Q.Liu S.B.Liu T.Liu X.Liu Y.W.Liu Y.Liu Y.L.Liu Z.Q.Liu Z.Y.Liu Z.W.Liu I.Logashenko Y.Long C.G.Lu J.X.Lu N.Lu Q.F.Lü Y.Lu Y.Lu Z.Lu P.Lukin F.J.Luo T.Luo X.F.Luo Y.H.Luo H.J.Lyu X.R.Lyu J.P.Ma P.Ma Y.Ma Y.M.Ma F.Maas S.Malde D.Matvienko Z.X.Meng R.Mitchell A.Nefediev Y.Nefedov S.L.Olsen Q.Ouyang P.Pakhlov G.Pakhlova X.Pan Y.Pan E.Passemar Y.P.Pei H.P.Peng L.Peng X.Y.Peng X.J.Peng K.Peters S.Pivovarov E.Pyata B.B.Qi Y.Q.Qi W.B.Qian Y.Qian C.F.Qiao J.J.Qin J.J.Qin L.Q.Qin X.S.Qin T.L.Qiu J.Rademacker C.F.Redmer H.Y.Sang M.Saur W.Shan X.Y.Shan L.L.Shang M.Shao L.Shekhtman C.P.Shen J.M.Shen Z.T.Shen H.C.Shi X.D.Shi B.Shwartz A.Sokolov J.J.Song W.M.Song Y.Song Y.X.Song A.Sukharev J.F.Sun L.Sun X.M.Sun Y.J.Sun Z.P.Sun J.Tang S.S.Tang Z.B.Tang C.H.Tian J.S.Tian Y.Tian Y.Tikhonov K.Todyshev T.Uglov V.Vorobyev B.D.Wan B.L.Wang B.Wang D.Y.Wang G.Y.Wang G.L.Wang H.L.Wang J.Wang J.H.Wang J.C.Wang M.L.Wang R.Wang R.Wang S.B.Wang W.Wang W.P.Wang X.C.Wang X.D.Wang X.L.Wang X.L.Wang X.P.Wang X.F.Wang Y.D.Wang Y.P.Wang Y.Q.Wang Y.L.Wang Y.G.Wang Z.Y.Wang Z.Y.Wang Z.L.Wang Z.G.Wang D.H.Wei X.L.Wei X.M.Wei Q.G.Wen X.J.Wen G.Wilkinson B.Wu J.J.Wu L.Wu P.Wu T.W.Wu Y.S.Wu L.Xia T.Xiang C.W.Xiao D.Xiao M.Xiao K.P.Xie Y.H.Xie Y.Xing Z.Z.Xing X.N.Xiong F.R.Xu J.Xu L.L.Xu Q.N.Xu X.C.Xu X.P.Xu Y.C.Xu Y.P.Xu Y.Xu Z.Z.Xu D.W.Xuan F.F.Xue L.Yan M.J.Yan W.B.Yan W.C.Yan X.S.Yan B.F.Yang C.Yang H.J.Yang H.R.Yang H.T.Yang J.F.Yang S.L.Yang Y.D.Yang Y.H.Yang Y.S.Yang Y.L.Yang Z.W.Yang Z.Y.Yang D.L.Yao H.Yin X.H.Yin N.Yokozaki S.Y.You Z.Y.You C.X.Yu F.S.Yu G.L.Yu H.L.Yu J.S.Yu J.Q.Yu L.Yuan X.B.Yuan Z.Y.Yuan Y.F.Yue M.Zeng S.Zeng A.L.Zhang B.W.Zhang G.Y.Zhang G.Q.Zhang H.J.Zhang H.B.Zhang J.Y.Zhang J.L.Zhang J.Zhang L.Zhang L.M.Zhang Q.A.Zhang R.Zhang S.L.Zhang T.Zhang X.Zhang Y.Zhang Y.J.Zhang Y.X.Zhang Y.T.Zhang Y.F.Zhang Y.C.Zhang Y.Zhang Y.Zhang Y.M.Zhang Y.L.Zhang Z.H.Zhang Z.Y.Zhang Z.Y.Zhang H.Y.Zhao J.Zhao L.Zhao M.G.Zhao Q.Zhao R.G.Zhao R.P.Zhao Y.X.Zhao Z.G.Zhao Z.X.Zhao A.Zhemchugov B.Zheng L.Zheng Q.B.Zheng R.Zheng Y.H.Zheng X.H.Zhong H.J.Zhou H.Q.Zhou H.Zhou S.H.Zhou X.Zhou X.K.Zhou X.P.Zhou X.R.Zhou Y.L.Zhou Y.Zhou Y.X.Zhou Z.Y.Zhou J.Y.Zhu K.Zhu R.D.Zhu R.L.Zhu S.H.Zhu Y.C.Zhu Z.A.Zhu V.Zhukova V.Zhulanov B.S.Zou Y.B.Zuo 《Frontiers of physics》 SCIE CSCD 2024年第1期1-154,共154页
The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of... The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies. 展开更多
关键词 electron–positron collider tau-charm region high luminosity STCF detector conceptual design
原文传递
The Holocene environmental changes revealed from the sediments of the Yarkov sub-basin of Lake Chany,south-western Siberia
2
作者 S.K.Krivonogov A.N.Zhdanova +10 位作者 P.A.Solotchin A.Y.Kazansky V.V.Chegis Z.Liu M.Song S.V.Zhilich N.A.Rudaya x.cao O.V.Palagushkina L.B.Nazarova L.S.Syrykh 《Geoscience Frontiers》 SCIE CAS CSCD 2023年第2期133-153,共21页
Lake Chany is the largest endorheic lake in Siberia whose catchment is entirely on the territory of Russia.Its geographical location on the climate-sensitive boundary of wet and dry landscapes provides an opportunity ... Lake Chany is the largest endorheic lake in Siberia whose catchment is entirely on the territory of Russia.Its geographical location on the climate-sensitive boundary of wet and dry landscapes provides an opportunity to gain more knowledge about environmental changes in the West Siberian interior during the Holocene and about the evolution of the lake itself.Sediment cores obtained from the Yarkov subbasin of the lake in 2008 have been comprehensively studied by a number of approaches including sedimentology and AMS dating,pollen,diatom and chironomid analyses(with statistical interpretation of the results),mineralogy of authigenic minerals and geochemistry of plant lipids(biomarker analysis.).Synthesis of new results presented here and published data provides a good justification for our hypothesis that Lake Chany is very young,no older than 3.6 ka BP.Before that,between 9 and 3.6 ka BP,the Chany basin was a swampy landscape with a very low sedimentation rate;it could not be identified as a water body.In the early lake phase,between 3.6 and 1.5 ka BP,the lake was shallow,1.2–3.5 m in depth,and it rose to its modern size,up to 6.5 m in depth,during the last millennium.Our data reveal important changes in the understanding of the history of this large endorheic lake,as before it was envisioned as a large lake with significant changes in water level since ca.14 ka BP.In addition to hydrology,our proxies provide updates and details of the regional vegetation and climate change since ca.4 ka BP in the WestSiberian forest-steppe and steppe.As evolution of the Chany basin is dependent on hydroclimatic changes in a large region of southern West Siberia,we compare lake-level change and climate-change proxies from the other recently and most comprehensively studied lakes of the region. 展开更多
关键词 Saline lake Multiproxy study HOLOCENE Climate Environment West Siberia
在线阅读 下载PDF
The operation and improvement of CSNS front end
3
作者 H.Ouyang H.Li +9 位作者 x.cao W.Chen T.Huang S.Liu Y.Lv Y.Xiao K.Xue R.Zhu S.Fu S.Wang 《Radiation Detection Technology and Methods》 CSCD 2020年第1期110-115,共6页
Introduction Operation target beam power of China Spallation Neutron Source(CSNS),as the China's first 100 kW beam power pulsed neutron source,is now larger than 80 kW.During the beam power upgrading process of CS... Introduction Operation target beam power of China Spallation Neutron Source(CSNS),as the China's first 100 kW beam power pulsed neutron source,is now larger than 80 kW.During the beam power upgrading process of CSNS to 50 kW from 2018 to 2019,many improvements have been made for the front end of CSNS.Results The improvements mainly focus on solving the problems of ion source instability and the radio frequency quadrupole(RFQ)sparking caused by the pre-chopped beam into RFQ. 展开更多
关键词 ION SOURCE LEBT Pre-chopper RFQ Sparking
原文传递
Derimorphisms over Algebras and Applications
4
作者 x.cao S.H.Liu +3 位作者 X.S.Lu Z.J.Ye Z.R.Yu Y.H.Zhang 《Algebra Colloquium》 SCIE CSCD 2023年第2期193-204,共12页
The new concept"derimorphism"generalizing both derivation and homomor-phism is defined.When a derimorphism is invertible,its inverse is a Rota-Baxter operator.The general theory of derimorphism is establishe... The new concept"derimorphism"generalizing both derivation and homomor-phism is defined.When a derimorphism is invertible,its inverse is a Rota-Baxter operator.The general theory of derimorphism is established.The classification of all derimorphisms over an associative unital algebra is obtained.Contrary to the nonexistence of nontriv-ial positive derivations,it is shown that nontrivial positive derimorphisms do exist over any pair of opposite orderings over R[x],the lattice-ordered full matrix algebra and upper triangular matrix algebra over a totally ordered field. 展开更多
关键词 derimorphism Rota-Baxter operator opposite orderings positive derimor-phism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部