The development of efficient,cost-effective electrocatalysts for oxygen evolution reaction(OER)is crucial for advancing sustainable energy.In this study,we investigated the influence of the solvent type on the morphol...The development of efficient,cost-effective electrocatalysts for oxygen evolution reaction(OER)is crucial for advancing sustainable energy.In this study,we investigated the influence of the solvent type on the morphological evolution and electrocatalytic performance of cobalt-based ZIF-67 metal-organic frameworks(MOFs).Particularly,we demonstrated the significant effect of solvent-mediated morphological control on the OER performance using methanol(MeOH),N,N-dimethylformamide(DMF),and deionized(DI)water.The ZIF-L(W),synthesized in DI water,exhibited a unique 2D leaf-like structure,and achieved remarkably low overpotentials of 360,398,and 460 mV at current densities of 50,100,and 200 mA cm^(−2),respectively.This performance significantly surpasses those of the polyhedral ZIF-67(D)and ZIF-67(M)structures synthesized in DMF and MeOH,respectively.The superior OER activity of ZIF-L(W)was attributed to its larger pore size,enhanced electron transfer properties,and the formation of unsaturated coordination sites.These results present a scalable,low-temperature route for designing high-performance MOF-based electrocatalysts with potential applications in sustainable energy systems.展开更多
基金financially supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2020R1A5A1019131)supported by the Korea Planning&Evaluation Institute of Industrial Technology(KEIT)and the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(No.RS-2024-00433671).
文摘The development of efficient,cost-effective electrocatalysts for oxygen evolution reaction(OER)is crucial for advancing sustainable energy.In this study,we investigated the influence of the solvent type on the morphological evolution and electrocatalytic performance of cobalt-based ZIF-67 metal-organic frameworks(MOFs).Particularly,we demonstrated the significant effect of solvent-mediated morphological control on the OER performance using methanol(MeOH),N,N-dimethylformamide(DMF),and deionized(DI)water.The ZIF-L(W),synthesized in DI water,exhibited a unique 2D leaf-like structure,and achieved remarkably low overpotentials of 360,398,and 460 mV at current densities of 50,100,and 200 mA cm^(−2),respectively.This performance significantly surpasses those of the polyhedral ZIF-67(D)and ZIF-67(M)structures synthesized in DMF and MeOH,respectively.The superior OER activity of ZIF-L(W)was attributed to its larger pore size,enhanced electron transfer properties,and the formation of unsaturated coordination sites.These results present a scalable,low-temperature route for designing high-performance MOF-based electrocatalysts with potential applications in sustainable energy systems.