This paper describes a fabrication process for the hyperboloidal concave mirror of a 46.5 nm telescope. The180 mm aperture hyperboloidal concave mirror and 70 mm aperture compensator are machined directly from chemica...This paper describes a fabrication process for the hyperboloidal concave mirror of a 46.5 nm telescope. The180 mm aperture hyperboloidal concave mirror and 70 mm aperture compensator are machined directly from chemical mechanical polishing of a spherical surface to a high-accuracy aspherical surface by ion beam figuring.The aspherical measurement method is the Dall null test. To minimize system errors in the measurement process,the rotational measurement method with six rotations is used in the null test. The results of the analysis for the ME(first solve the machined surface profile, then solve the system errors) and EM(first solve the system errors, then solve the machined surface profile) methods of calculation in the measurement are given. The ME method is a more accurate rotational test method, and the six rotations are appropriate for rotational measurements. After the figuring process, the hyperboloidal concave mirror surface profile reached 8.27 nm rms and the compensator surface profile is approximately 4 nm rms. The roughness of the hyperboloidal concave mirror is smooth to0.160 nm rms.展开更多
The Solar Upper Transition Region Imager(SUTRI)onboard the Space Advanced Technology demonstration satellite(SATech-01),which was launched to a Sun-synchronous orbit at a height of~500 km in 2022 July,aims to test the...The Solar Upper Transition Region Imager(SUTRI)onboard the Space Advanced Technology demonstration satellite(SATech-01),which was launched to a Sun-synchronous orbit at a height of~500 km in 2022 July,aims to test the on-orbit performance of our newly developed Sc/Si multi-layer reflecting mirror and the 2k×2k EUV CMOS imaging camera and to take full-disk solar images at the Ne VII 46.5 nm spectral line with a filter width of~3 nm.SUTRI employs a Ritchey-Chrétien optical system with an aperture of 18 cm.The on-orbit observations show that SUTRI images have a field of view of~416×416 and a moderate spatial resolution of~8″without an image stabilization system.The normal cadence of SUTRI images is 30 s and the solar observation time is about16 hr each day because the earth eclipse time accounts for about 1/3 of SATech-01's orbit period.Approximately15 GB data is acquired each day and made available online after processing.SUTRI images are valuable as the Ne VII 46.5 nm line is formed at a temperature regime of~0.5 MK in the solar atmosphere,which has rarely been sampled by existing solar imagers.SUTRI observations will establish connections between structures in the lower solar atmosphere and corona,and advance our understanding of various types of solar activity such as flares,filament eruptions,coronal jets and coronal mass ejections.展开更多
The Solar Upper Transition Region Imager(SUTRI)focuses on the solar transition region to achieve dynamic imaging observation of the upper transition region.In this paper,we report the optical system design,mechanical ...The Solar Upper Transition Region Imager(SUTRI)focuses on the solar transition region to achieve dynamic imaging observation of the upper transition region.In this paper,we report the optical system design,mechanical design,ultrasmooth mirror manufacture and measurement,EUV multilayer film coating,prelaunch installation and calibration for the SUTRI payload at IPOE,Tongji University.Finally,the SUTRI carried by the SATech-01 satellite was successfully set to launch.All functions of this telescope were normal,and the observation results obtained in orbit were consistent with the design.展开更多
We study a new set of duality relations between weighted,combinatoric invariants of a graph G.The dualities arise from a non-linear transform B,acting on the weight function p.We define B on a space of real-valued fun...We study a new set of duality relations between weighted,combinatoric invariants of a graph G.The dualities arise from a non-linear transform B,acting on the weight function p.We define B on a space of real-valued functions O and investigate its properties.We show that three invariants(the weighted independence number,the weighted Lovasz number,and the weighted fractional packing number)are fixed points of B^2,but the weighted Shannon capacity is not.We interpret these invariants in the study of quantum non-locality.展开更多
基金funded by the National Key R&D Program of China (2022YFF0709101)the National Natural Science Foundation of China (NSFC) under Nos. 62105244 and 61621001。
文摘This paper describes a fabrication process for the hyperboloidal concave mirror of a 46.5 nm telescope. The180 mm aperture hyperboloidal concave mirror and 70 mm aperture compensator are machined directly from chemical mechanical polishing of a spherical surface to a high-accuracy aspherical surface by ion beam figuring.The aspherical measurement method is the Dall null test. To minimize system errors in the measurement process,the rotational measurement method with six rotations is used in the null test. The results of the analysis for the ME(first solve the machined surface profile, then solve the system errors) and EM(first solve the system errors, then solve the machined surface profile) methods of calculation in the measurement are given. The ME method is a more accurate rotational test method, and the six rotations are appropriate for rotational measurements. After the figuring process, the hyperboloidal concave mirror surface profile reached 8.27 nm rms and the compensator surface profile is approximately 4 nm rms. The roughness of the hyperboloidal concave mirror is smooth to0.160 nm rms.
基金supported by the National Natural Science Foundation of China(NSFC)under Grants 11825301,12003016,12073077the National Key R&D Program of China No.2021YFA0718600+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences with the Grant No.XDA15018400the Youth Innovation Promotion Association of CAS(2023061)。
文摘The Solar Upper Transition Region Imager(SUTRI)onboard the Space Advanced Technology demonstration satellite(SATech-01),which was launched to a Sun-synchronous orbit at a height of~500 km in 2022 July,aims to test the on-orbit performance of our newly developed Sc/Si multi-layer reflecting mirror and the 2k×2k EUV CMOS imaging camera and to take full-disk solar images at the Ne VII 46.5 nm spectral line with a filter width of~3 nm.SUTRI employs a Ritchey-Chrétien optical system with an aperture of 18 cm.The on-orbit observations show that SUTRI images have a field of view of~416×416 and a moderate spatial resolution of~8″without an image stabilization system.The normal cadence of SUTRI images is 30 s and the solar observation time is about16 hr each day because the earth eclipse time accounts for about 1/3 of SATech-01's orbit period.Approximately15 GB data is acquired each day and made available online after processing.SUTRI images are valuable as the Ne VII 46.5 nm line is formed at a temperature regime of~0.5 MK in the solar atmosphere,which has rarely been sampled by existing solar imagers.SUTRI observations will establish connections between structures in the lower solar atmosphere and corona,and advance our understanding of various types of solar activity such as flares,filament eruptions,coronal jets and coronal mass ejections.
基金the National Key R&D Program of China(2022YFF0709101)the National Natural Science Foundation of China(NSFC)under grant Nos.61621001,62105244,12003016 and 12204353.
文摘The Solar Upper Transition Region Imager(SUTRI)focuses on the solar transition region to achieve dynamic imaging observation of the upper transition region.In this paper,we report the optical system design,mechanical design,ultrasmooth mirror manufacture and measurement,EUV multilayer film coating,prelaunch installation and calibration for the SUTRI payload at IPOE,Tongji University.Finally,the SUTRI carried by the SATech-01 satellite was successfully set to launch.All functions of this telescope were normal,and the observation results obtained in orbit were consistent with the design.
基金supported by the Templeton Religion Trust(Grant No.TRT 0159)supported by USA Army Research Office(ARO)(Grant No.W911NF1910302)。
文摘We study a new set of duality relations between weighted,combinatoric invariants of a graph G.The dualities arise from a non-linear transform B,acting on the weight function p.We define B on a space of real-valued functions O and investigate its properties.We show that three invariants(the weighted independence number,the weighted Lovasz number,and the weighted fractional packing number)are fixed points of B^2,but the weighted Shannon capacity is not.We interpret these invariants in the study of quantum non-locality.