Background:ZhiZi-BoPi Decoction(ZZBPD),a traditional prescription for liver and gallbladder protection,has garnered significant clinical interest due to its hepatoprotective properties.Despite its proven efficacy in m...Background:ZhiZi-BoPi Decoction(ZZBPD),a traditional prescription for liver and gallbladder protection,has garnered significant clinical interest due to its hepatoprotective properties.Despite its proven efficacy in mitigating intrahepatic cholestasis,the precise mechanisms underlying its therapeutic effects remain inadequately understood.This study aims to comprehensively investigate the pharmacological mechanisms underlying the therapeutic effects of ZZBPD in cholestatic liver injury(CLI).Methods:Firstly,we evaluated the hepatoprotective effects of ZZBPD on mice with CLI induced byα-naphthylisothiocyanate(ANIT),by measuring biochemical markers,inflammatory factors,and bile acid levels.Subsequently,we employed network pharmacology and single-cell RNA sequencing(scRNA-seq)to identify key targets and potential signaling pathways for the prevention and treatment of CLI.Finally,we further validated the mechanism of action of ZZBPD on these key targets through molecular docking,western blotting,and immunofluorescence techniques.Results:ZZBPD notably improved serum liver function,reduced hepatic inflammation,and restored bile acid balance.Through network pharmacology and scRNA-seq analysis,48 core targets were identified,including TNF,IL-6,and NFKB1,all of which are linked to the IL-17 and NF-κB signaling pathways,as shown by KEGG enrichment analysis.Molecular docking further confirmed stable interactions between ZZBPD’s key active components and molecules such as IL-6,IL-17,and NF-κB.Additionally,western blotting and immunofluorescence validated the downregulation of IL-17 and NF-κB protein expression in liver tissue.Conclusion:ZZBPD effectively treats CLI by activating pathways related to the bile acid receptor FXR,while also modulating the IL-17/NF-κB signaling pathway.This dual action enhances bile secretion and alleviates liver inflammation.These findings offer important insights into the pharmacological mechanisms of ZZBPD and underscore its potential as a promising therapeutic for CLI.展开更多
Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductiv...Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability.展开更多
Enhancing the ignition system performance of turbo engines is crucial,with a focus on rapidly and reliably igniting the entire combustor in low-temperature,low-pressure,high-speed inlet flow conditions.This challenge ...Enhancing the ignition system performance of turbo engines is crucial,with a focus on rapidly and reliably igniting the entire combustor in low-temperature,low-pressure,high-speed inlet flow conditions.This challenge has garnered international attention.To address the issue of reliable ignition in the combustors of advanced propulsion system,this paper proposes a Multichannel Jet Enhanced Plasma Igniter(MJEPI) and conducts comparative experimental studies with the conventional spark igniter in a component-level dual-dome swirl combustor.The ignition limit in the combustor is obtained and the ignition processes are recorded.Experimental results demonstrate that the MJEPI significantly improves the ignition performance at high altitude.Specifically,at 0 km and 6 km for ground start-up,ignition limit is extended by 36% and 29%,respectively.At 6 km and 12 km for high-altitude relight,ignition limit is extended by 32% and 21%,respectively.The maximum ignition height is increased by 2.3 km,as determined by the global equivalence ratio of 1.The primary reason for these improvements is attributed to the larger initial flame kernel with greater penetration depth generated by MJEPI,which enables it to withstand more sever conditions such as low temperature,low pressure,and poor kerosene spray quality at elevated altitudes.展开更多
Plasma-assisted combustion technology has been a hot spot in aero-engines andscramjet-engines.The electron density is a key discharge parameter related to the active-particledensity.The latter has been considered play...Plasma-assisted combustion technology has been a hot spot in aero-engines andscramjet-engines.The electron density is a key discharge parameter related to the active-particledensity.The latter has been considered playing an important role in the above applications bythe kinetic effect.In this work,an atmospheric pressure air plasma collisional-radiative model con-sidering the excited states of atomic nitrogen and oxygen is built based on previous widely kineticinvestigations of molecules and radicals,as well as their excited states.The excited states,especiallythe atomic nitrogen and oxygen states were less investigated in previous works.The emission inten-sity distributions from the model have a good agreement with those measured in the glide arcplasma with two discharge modes,as well as the microwave plasma.Based on the kinetics of molec-ular and atomic emitting states,the line-ratio method is presented to determine the electron density.The N_(2)(337 nm)/O(844 nm)and N_(2)(337 nm)/NO(γ)line ratios are used for the glide arc plasma andmicrowave plasma torch,respectively.Besides,the kinetics of the excited states involved with twoline-ratios are also investigated in the two types of discharges.Combined with the atmospheric pres-sure actinometry method,the kinetic effect of the plasma-assisted combustion can be revealed quan-titatively in the future.展开更多
BACKGROUND:Pulse indicated continuous cardiac output(PiCCO)has largely replaced Swan-Ganz catheterization in shock patients.However,whether PiCCO monitoring can improve outcomes of shock patients,such as mortality,len...BACKGROUND:Pulse indicated continuous cardiac output(PiCCO)has largely replaced Swan-Ganz catheterization in shock patients.However,whether PiCCO monitoring can improve outcomes of shock patients,such as mortality,length of hospital stay,duration of mechanical ventilation,or laboratory parameters,remains unknown.METHODS:This retrospective cohort study included patients with shock in the intensive care unit(ICU)from January 2013 to January 2020.Patients were divided into PiCCO group and non-PiCCO group based on treatment with PiCCO monitoring or not.Demographic characteristics,Acute Physiology and Chronic Health Evaluation(APACHE)II scores,quick Sequential Organ Failure Assessment(qSOFA)scores,14-day mortality,and N-terminal pro-B-type natriuretic peptide(NT-proBNP)levels at 0,1,3 and 7 days after onset of shock,duration of mechanical ventilation,length of hospital stay and hospitalization costs were compiled and analyzed using propensity score matching(PSM).RESULTS:Real-world analysis of 1,583 ICU patients suff ering shock after propensity score matching revealed that 14-day mortality did not differ between PiCCO and non-PiCCO groups(36.2%vs.32.6%,P=0.343).Duration of mechanical ventilation,hospital stay,and hospitalization costs were also similar between the two groups(P>0.05).No diff erences in changes of NT-proBNP levels on days 0,1,3,and 7 as compared to baseline were noted between the two groups(P>0.05).CONCLUSIONS:The results of our real-world indicate that PiCCO monitoring may not shorten the duration of mechanical ventilation,length of hospital stay,or reduce hospitalization costs,nor will it bring survival benefi ts to ICU patients suff ering shock.展开更多
Previous X-ray and optical studies of the galaxy cluster pair A222/223 suggested the possible presence of a=lamentary structure connecting the two clusters,a result that appears to be supported by subsequent weak-lens...Previous X-ray and optical studies of the galaxy cluster pair A222/223 suggested the possible presence of a=lamentary structure connecting the two clusters,a result that appears to be supported by subsequent weak-lensing analyses.This=lament has been reported to host a primordial warm-hot intergalactic medium,which existed prior to being heated by the interactions of the clusters.In this study,we made an attempt to examine the reported emission feature with data from an archival Suzaku observation,taking advantage of its low detector background.Because the emission is expected to be very weak,we=rst carefully examined all potential sources of“contamination,”and then modeled the residual emission.Due to large uncertainties,unfortunately,our results can neither con=rm the presence of the reported emission feature nor rule it out.We discuss the sources of uncertainties.展开更多
Sea cucumber Apostichopus japonicus is a crucial aquatic species known for its nutritional value.However,the genetic basis and regulatory mechanisms underlying its nutritional quality remain underexplored.This study i...Sea cucumber Apostichopus japonicus is a crucial aquatic species known for its nutritional value.However,the genetic basis and regulatory mechanisms underlying its nutritional quality remain underexplored.This study investigates the nutritional quality of A.japonicus from different geographical regions and identifies genetic markers associated with these traits through a genome-wide association study(GWAS).We observed significant regional variations in the nutritional content of A.japonicus.Samples collected from Nanhuangcheng Island displayed the highest levels of saponins,whereas those from Laizhou exhibited the highest concentrations of glycosaminoglycans.Lingshan Island samples were the richest in amino acids,while samples from Rizhao contained the highest levels of polyunsaturated fatty acids.Through GWAS,265 candidate genes and related single nucleotide polymorphisms(SNPs)were identified as being significantly associated with essential nutritional traits,including genes like ubiquitin domain-containing protein 1(UBTD1),inactive pancreatic lipase-related protein 1,protein arginine N-methyltransferase 5(PRMT5)and GDP-fucose protein O-fucosyltransferase 1(POFUT1).This study advanced our knowledge of the genetic mechanisms underlying the nutritional quality of A.japonicus.The genetic markers identified herein o ffer crucial insights for breeding initiatives aimed at optimizing the nutritional profile of sea cucumbers.展开更多
With the development of deep sequencing and bioinformatics technology, a large number of products produced by abnormal RNA splicing, such as chimeric RNA and chimeric/fusion proteins, have been discovered. Natural chi...With the development of deep sequencing and bioinformatics technology, a large number of products produced by abnormal RNA splicing, such as chimeric RNA and chimeric/fusion proteins, have been discovered. Natural chimeric/fusion genes are new genes formed by natural fusion of two or more independent genes. Chimeric RNAs can be transcribed by natural chimeric genes, and can also be formed by cis-splicing or trans-splicing of two or more precursor mRNAs. Unlike fusion genes, the production of chimeric RNAs does not involve changes in the DNA level of chromosomes. At first, chimeric RNAs were found as tumor markers. With the deepening of research, researchers also found a large number of chimeric RNAs in normal tissues. From the perspective of biological function, chimeric RNAs can play a biological role in regulating the expression of corresponding maternal genes, translating into chimeric proteins, and forming long non-coding RNAs. The objective of the present study focused on the frontiers of chimeric RNA and reviewed its role in health and tumor study to reveal research progress of chimeric RNA and health and provide a new sight of relative disease treatment. The main conclusion of this review is that chimeric RNA may serve as a biomarker for specific tumor diagnose and treatment while its role in normal physiology needs to be revealed.展开更多
同化大量观测资料可以有效地改进模式预报结果,但不同观测对预报的影响有着显著差异,合理评估观测对预报的贡献是数值模式中最具挑战性的诊断之一。本文采用基于伴随的预报对观测的敏感性(Forecast Sensitivity to Observation,简称FSO...同化大量观测资料可以有效地改进模式预报结果,但不同观测对预报的影响有着显著差异,合理评估观测对预报的贡献是数值模式中最具挑战性的诊断之一。本文采用基于伴随的预报对观测的敏感性(Forecast Sensitivity to Observation,简称FSO)方法,构建WRFDA(Weather Research and Forecasting model’sData Assimilation)框架下的WRFDA-FSO系统。基于2019年9月超大城市项目在北京地区获取的风廓线雷达(Wind Profile Radar,简称WPR)和地基微波辐射计(Microwave Radiometer,简称MWR)观测数据,利用WRFDA-FSO系统,开展观测对WRF模式12 h预报的影响试验,并分析风温湿观测对预报的贡献。结果表明:(1)同化的观测资料(MWR、WPR、Sound、Synop和Geoamv)均减小了WRF模式12 h预报误差,对预报为正贡献,其中MWR观测对预报的影响最大,WPR风场观测对预报的改进效果优于Sound的风场观测。(2)WPR的U、V观测和MWR的T、Q观测中,V观测和T观测对预报的正贡献值更高,对预报的改进效果更优。(3)WPR和MWR多数高度层的观测均减小了预报误差,对预报为正贡献,其中MWR的T观测对预报的正贡献主要位于近地面800 h Pa以下。展开更多
基金supported by the National Science Foundation of China(No.82405004,82474253)the Natural Science Foundation postdoctoral project of Chongqing(CSTB2022NSCQ-BHX0709)+2 种基金Chongqing Wanzhou District doctoral“through train”scientific research project(wzstc-20220124)Natural Science Foundation of Chongqing,China(No.Cstc2021jcyj-msxmX0996)Chongqing Wanzhou District Science and Health Joint Medical Research Project(wzstc-kw2023032)。
文摘Background:ZhiZi-BoPi Decoction(ZZBPD),a traditional prescription for liver and gallbladder protection,has garnered significant clinical interest due to its hepatoprotective properties.Despite its proven efficacy in mitigating intrahepatic cholestasis,the precise mechanisms underlying its therapeutic effects remain inadequately understood.This study aims to comprehensively investigate the pharmacological mechanisms underlying the therapeutic effects of ZZBPD in cholestatic liver injury(CLI).Methods:Firstly,we evaluated the hepatoprotective effects of ZZBPD on mice with CLI induced byα-naphthylisothiocyanate(ANIT),by measuring biochemical markers,inflammatory factors,and bile acid levels.Subsequently,we employed network pharmacology and single-cell RNA sequencing(scRNA-seq)to identify key targets and potential signaling pathways for the prevention and treatment of CLI.Finally,we further validated the mechanism of action of ZZBPD on these key targets through molecular docking,western blotting,and immunofluorescence techniques.Results:ZZBPD notably improved serum liver function,reduced hepatic inflammation,and restored bile acid balance.Through network pharmacology and scRNA-seq analysis,48 core targets were identified,including TNF,IL-6,and NFKB1,all of which are linked to the IL-17 and NF-κB signaling pathways,as shown by KEGG enrichment analysis.Molecular docking further confirmed stable interactions between ZZBPD’s key active components and molecules such as IL-6,IL-17,and NF-κB.Additionally,western blotting and immunofluorescence validated the downregulation of IL-17 and NF-κB protein expression in liver tissue.Conclusion:ZZBPD effectively treats CLI by activating pathways related to the bile acid receptor FXR,while also modulating the IL-17/NF-κB signaling pathway.This dual action enhances bile secretion and alleviates liver inflammation.These findings offer important insights into the pharmacological mechanisms of ZZBPD and underscore its potential as a promising therapeutic for CLI.
基金supported by the National Natural Science Foundation of China(No.52127816),the National Key Research and Development Program of China(No.2020YFA0715000)the National Natural Science and Hong Kong Research Grant Council Joint Research Funding Project of China(No.5181101182)the NSFC/RGC Joint Research Scheme sponsored by the Research Grants Council of Hong Kong and the National Natural Science Foundation of China(No.N_PolyU513/18).
文摘Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability.
基金supported by the Science Center for Gas Turbine Project, China (No. P2022-B-Ⅱ-018-001)。
文摘Enhancing the ignition system performance of turbo engines is crucial,with a focus on rapidly and reliably igniting the entire combustor in low-temperature,low-pressure,high-speed inlet flow conditions.This challenge has garnered international attention.To address the issue of reliable ignition in the combustors of advanced propulsion system,this paper proposes a Multichannel Jet Enhanced Plasma Igniter(MJEPI) and conducts comparative experimental studies with the conventional spark igniter in a component-level dual-dome swirl combustor.The ignition limit in the combustor is obtained and the ignition processes are recorded.Experimental results demonstrate that the MJEPI significantly improves the ignition performance at high altitude.Specifically,at 0 km and 6 km for ground start-up,ignition limit is extended by 36% and 29%,respectively.At 6 km and 12 km for high-altitude relight,ignition limit is extended by 32% and 21%,respectively.The maximum ignition height is increased by 2.3 km,as determined by the global equivalence ratio of 1.The primary reason for these improvements is attributed to the larger initial flame kernel with greater penetration depth generated by MJEPI,which enables it to withstand more sever conditions such as low temperature,low pressure,and poor kerosene spray quality at elevated altitudes.
基金supported by the National Key Lab of Aerospace Power System and Plasma Technology Foundation,China(No.6142202210101)the National Science and Technology Major Project,China(No.J2019-Ⅲ-0013-0056)+2 种基金the National Natural Science Foundation of China(No.52025064)supported by the National Natural Science Foundation of China(Nos.52350072 and 52277167)the Beijing Natural Science Foundation,China(No.1242030)。
文摘Plasma-assisted combustion technology has been a hot spot in aero-engines andscramjet-engines.The electron density is a key discharge parameter related to the active-particledensity.The latter has been considered playing an important role in the above applications bythe kinetic effect.In this work,an atmospheric pressure air plasma collisional-radiative model con-sidering the excited states of atomic nitrogen and oxygen is built based on previous widely kineticinvestigations of molecules and radicals,as well as their excited states.The excited states,especiallythe atomic nitrogen and oxygen states were less investigated in previous works.The emission inten-sity distributions from the model have a good agreement with those measured in the glide arcplasma with two discharge modes,as well as the microwave plasma.Based on the kinetics of molec-ular and atomic emitting states,the line-ratio method is presented to determine the electron density.The N_(2)(337 nm)/O(844 nm)and N_(2)(337 nm)/NO(γ)line ratios are used for the glide arc plasma andmicrowave plasma torch,respectively.Besides,the kinetics of the excited states involved with twoline-ratios are also investigated in the two types of discharges.Combined with the atmospheric pres-sure actinometry method,the kinetic effect of the plasma-assisted combustion can be revealed quan-titatively in the future.
文摘BACKGROUND:Pulse indicated continuous cardiac output(PiCCO)has largely replaced Swan-Ganz catheterization in shock patients.However,whether PiCCO monitoring can improve outcomes of shock patients,such as mortality,length of hospital stay,duration of mechanical ventilation,or laboratory parameters,remains unknown.METHODS:This retrospective cohort study included patients with shock in the intensive care unit(ICU)from January 2013 to January 2020.Patients were divided into PiCCO group and non-PiCCO group based on treatment with PiCCO monitoring or not.Demographic characteristics,Acute Physiology and Chronic Health Evaluation(APACHE)II scores,quick Sequential Organ Failure Assessment(qSOFA)scores,14-day mortality,and N-terminal pro-B-type natriuretic peptide(NT-proBNP)levels at 0,1,3 and 7 days after onset of shock,duration of mechanical ventilation,length of hospital stay and hospitalization costs were compiled and analyzed using propensity score matching(PSM).RESULTS:Real-world analysis of 1,583 ICU patients suff ering shock after propensity score matching revealed that 14-day mortality did not differ between PiCCO and non-PiCCO groups(36.2%vs.32.6%,P=0.343).Duration of mechanical ventilation,hospital stay,and hospitalization costs were also similar between the two groups(P>0.05).No diff erences in changes of NT-proBNP levels on days 0,1,3,and 7 as compared to baseline were noted between the two groups(P>0.05).CONCLUSIONS:The results of our real-world indicate that PiCCO monitoring may not shorten the duration of mechanical ventilation,length of hospital stay,or reduce hospitalization costs,nor will it bring survival benefi ts to ICU patients suff ering shock.
基金supported in part by the National Natural Science Foundation of China through Grant 11821303by the Ministry of Science and Technology of China through Grant 2018YFA0404502+1 种基金support from the China Scholarship Councilthe nancial support of the GA?R EXPRO grant No.21-13491X.
文摘Previous X-ray and optical studies of the galaxy cluster pair A222/223 suggested the possible presence of a=lamentary structure connecting the two clusters,a result that appears to be supported by subsequent weak-lensing analyses.This=lament has been reported to host a primordial warm-hot intergalactic medium,which existed prior to being heated by the interactions of the clusters.In this study,we made an attempt to examine the reported emission feature with data from an archival Suzaku observation,taking advantage of its low detector background.Because the emission is expected to be very weak,we=rst carefully examined all potential sources of“contamination,”and then modeled the residual emission.Due to large uncertainties,unfortunately,our results can neither con=rm the presence of the reported emission feature nor rule it out.We discuss the sources of uncertainties.
基金Supported by the Key Research and Development Program of Shandong(Nos.2021LZGC029,2023LZGC019)the National Natural Science Foundation of China(No.42076093)+1 种基金the Special Funds for the Central Government to Guide Local Science and Technology Development(No.YDZX2023043)the Taishan Scholars Program(No.tsqn202306279)。
文摘Sea cucumber Apostichopus japonicus is a crucial aquatic species known for its nutritional value.However,the genetic basis and regulatory mechanisms underlying its nutritional quality remain underexplored.This study investigates the nutritional quality of A.japonicus from different geographical regions and identifies genetic markers associated with these traits through a genome-wide association study(GWAS).We observed significant regional variations in the nutritional content of A.japonicus.Samples collected from Nanhuangcheng Island displayed the highest levels of saponins,whereas those from Laizhou exhibited the highest concentrations of glycosaminoglycans.Lingshan Island samples were the richest in amino acids,while samples from Rizhao contained the highest levels of polyunsaturated fatty acids.Through GWAS,265 candidate genes and related single nucleotide polymorphisms(SNPs)were identified as being significantly associated with essential nutritional traits,including genes like ubiquitin domain-containing protein 1(UBTD1),inactive pancreatic lipase-related protein 1,protein arginine N-methyltransferase 5(PRMT5)and GDP-fucose protein O-fucosyltransferase 1(POFUT1).This study advanced our knowledge of the genetic mechanisms underlying the nutritional quality of A.japonicus.The genetic markers identified herein o ffer crucial insights for breeding initiatives aimed at optimizing the nutritional profile of sea cucumbers.
文摘With the development of deep sequencing and bioinformatics technology, a large number of products produced by abnormal RNA splicing, such as chimeric RNA and chimeric/fusion proteins, have been discovered. Natural chimeric/fusion genes are new genes formed by natural fusion of two or more independent genes. Chimeric RNAs can be transcribed by natural chimeric genes, and can also be formed by cis-splicing or trans-splicing of two or more precursor mRNAs. Unlike fusion genes, the production of chimeric RNAs does not involve changes in the DNA level of chromosomes. At first, chimeric RNAs were found as tumor markers. With the deepening of research, researchers also found a large number of chimeric RNAs in normal tissues. From the perspective of biological function, chimeric RNAs can play a biological role in regulating the expression of corresponding maternal genes, translating into chimeric proteins, and forming long non-coding RNAs. The objective of the present study focused on the frontiers of chimeric RNA and reviewed its role in health and tumor study to reveal research progress of chimeric RNA and health and provide a new sight of relative disease treatment. The main conclusion of this review is that chimeric RNA may serve as a biomarker for specific tumor diagnose and treatment while its role in normal physiology needs to be revealed.
文摘同化大量观测资料可以有效地改进模式预报结果,但不同观测对预报的影响有着显著差异,合理评估观测对预报的贡献是数值模式中最具挑战性的诊断之一。本文采用基于伴随的预报对观测的敏感性(Forecast Sensitivity to Observation,简称FSO)方法,构建WRFDA(Weather Research and Forecasting model’sData Assimilation)框架下的WRFDA-FSO系统。基于2019年9月超大城市项目在北京地区获取的风廓线雷达(Wind Profile Radar,简称WPR)和地基微波辐射计(Microwave Radiometer,简称MWR)观测数据,利用WRFDA-FSO系统,开展观测对WRF模式12 h预报的影响试验,并分析风温湿观测对预报的贡献。结果表明:(1)同化的观测资料(MWR、WPR、Sound、Synop和Geoamv)均减小了WRF模式12 h预报误差,对预报为正贡献,其中MWR观测对预报的影响最大,WPR风场观测对预报的改进效果优于Sound的风场观测。(2)WPR的U、V观测和MWR的T、Q观测中,V观测和T观测对预报的正贡献值更高,对预报的改进效果更优。(3)WPR和MWR多数高度层的观测均减小了预报误差,对预报为正贡献,其中MWR的T观测对预报的正贡献主要位于近地面800 h Pa以下。