The transport of suspended particulate matter is a crucial aspect of studies on sediment source-to-sink processes.However,research on its transport patterns in high-erosion areas of low-latitude seas remains limited.T...The transport of suspended particulate matter is a crucial aspect of studies on sediment source-to-sink processes.However,research on its transport patterns in high-erosion areas of low-latitude seas remains limited.To elucidate modern land-sea interaction processes controlled by the monsoon climate,this study investigates the seasonal transport patterns and control mechanisms of suspended particulate matter in the western Sunda Shelf.Results reveal significant seasonal variations in the spatial distribution of suspended particulate matter concentrations,with elevated levels observed during autumn compared with spring.These differences are directly attributed to the East Asian monsoon,including seasonal monsoon precipitation and the associated transport dynamics.During the northeast monsoon,the Malay Peninsula serves as a primary source for the western sea area,with terrestrial materials from its rivers transported to the northern Gulf of Thailand.This transport pattern shifts to an S-shaped,clockwise circulation during upwelling events.Conversely,in the southwest monsoon,rivers in the northern Gulf of Thailand become the predominant sources for the Sunda Shelf,with terrestrial materials carried by clockwise currents toward the eastern Malay Peninsula.When upwelling occurs off the southern Indochina Peninsula,one branch heads toward the South China Sea and the other toward the southern tip of the Malay Peninsula.The seasonal variation in material sources is further supported by the distribution of clay minerals and the discrimination results of rare earth element proxies,including(La/Sm)UCC-(Gd/Yb)UCCand(La/Yb)UCC-(Gd/Yb)UCC,in surface sediments from the Sunda Shelf and surrounding marine areas.展开更多
The Malacca Strait(MS)is a vital conduit for the exchange of water and sediment between the Indian Ocean and the Pacific Ocean,serving as a critical‘gateway'for sediment transport.Here,we present the geochemical ...The Malacca Strait(MS)is a vital conduit for the exchange of water and sediment between the Indian Ocean and the Pacific Ocean,serving as a critical‘gateway'for sediment transport.Here,we present the geochemical characteristics of surface sediments in the MS to elucidate the relationship between terrestrial material inputs and modern oceanic dynamic transport processes in the strait.The results reveal that the MS can be divided into three distinct geochemical provinces.ProvinceⅠ,located in the central region of the strait,is characterized by residual deposits.The preservation of these residual deposits can be attributed to the restricted sediment supply and the relatively weaker modern sedimentary hydrodynamic conditions.ProvinceⅡ,situated to the north of ProvinceⅠ,exhibits provenance differences between its southern and northern regions.The northern region is primarily supplied by sediments originating from the eastern shelf of the Andaman Sea,whereas sediments derived from Sumatra and the Sunda Shelf are predominantly deposited in the southern part of ProvinceⅡ.ProvinceⅢextends along the western coast of the Malaysian Peninsula,with sediments primarily sourced from the Malaysian Peninsula and the Sunda Shelf,while contributions from Sumatra and the eastern shelf of the Andaman Sea are negligible.River sediments from the Malaysian Peninsula and Sumatra are transported northwestward along their respective coasts by prevailing currents,which also facilitate the transportation of Sunda Shelf sediments within the strait,while sediments from the eastern shelf of the Andaman Sea are delivered to the MS via southward coastal currents during the southwest monsoon period.The southward currents and well-developed eddies potentially impede the northward transport of sediments from the Sunda Shelf and restrict the distribution of Andaman Sea sediments within the strait.This study substantially enhances the understanding of source-to-sink processes in the Indo-Pacific region.展开更多
基金the Basic Scientific Fund for National Public Research Institutes of China(No.2023Q03)the National Natural Science Foundation of China(Nos.42476078,42306091)+2 种基金the National Programme on Global Change and Air-Sea Interaction(Nos.GASI-04-HYDZ-02,GASI-02-SCS-CJB01)the China-Malaysia Cooperation Project‘Effect on Variability of Seasonal Monsoon on Sedimentary Process in Peninsular Malaysia Waters’the China-Thailand Cooperation Project‘Research on Vulnerability of Coastal Zone’。
文摘The transport of suspended particulate matter is a crucial aspect of studies on sediment source-to-sink processes.However,research on its transport patterns in high-erosion areas of low-latitude seas remains limited.To elucidate modern land-sea interaction processes controlled by the monsoon climate,this study investigates the seasonal transport patterns and control mechanisms of suspended particulate matter in the western Sunda Shelf.Results reveal significant seasonal variations in the spatial distribution of suspended particulate matter concentrations,with elevated levels observed during autumn compared with spring.These differences are directly attributed to the East Asian monsoon,including seasonal monsoon precipitation and the associated transport dynamics.During the northeast monsoon,the Malay Peninsula serves as a primary source for the western sea area,with terrestrial materials from its rivers transported to the northern Gulf of Thailand.This transport pattern shifts to an S-shaped,clockwise circulation during upwelling events.Conversely,in the southwest monsoon,rivers in the northern Gulf of Thailand become the predominant sources for the Sunda Shelf,with terrestrial materials carried by clockwise currents toward the eastern Malay Peninsula.When upwelling occurs off the southern Indochina Peninsula,one branch heads toward the South China Sea and the other toward the southern tip of the Malay Peninsula.The seasonal variation in material sources is further supported by the distribution of clay minerals and the discrimination results of rare earth element proxies,including(La/Sm)UCC-(Gd/Yb)UCCand(La/Yb)UCC-(Gd/Yb)UCC,in surface sediments from the Sunda Shelf and surrounding marine areas.
基金the National Natural Science Foundation of China(Nos.42206076,42476078)the National Program on Global Change and Air-Sea Interaction(No.GASI-02-SCSCJB01)the China-Malaysia Cooperation Project‘Effect on variability of seasonal monsoon on sedimentary process in Peninsular Malaysia waters’。
文摘The Malacca Strait(MS)is a vital conduit for the exchange of water and sediment between the Indian Ocean and the Pacific Ocean,serving as a critical‘gateway'for sediment transport.Here,we present the geochemical characteristics of surface sediments in the MS to elucidate the relationship between terrestrial material inputs and modern oceanic dynamic transport processes in the strait.The results reveal that the MS can be divided into three distinct geochemical provinces.ProvinceⅠ,located in the central region of the strait,is characterized by residual deposits.The preservation of these residual deposits can be attributed to the restricted sediment supply and the relatively weaker modern sedimentary hydrodynamic conditions.ProvinceⅡ,situated to the north of ProvinceⅠ,exhibits provenance differences between its southern and northern regions.The northern region is primarily supplied by sediments originating from the eastern shelf of the Andaman Sea,whereas sediments derived from Sumatra and the Sunda Shelf are predominantly deposited in the southern part of ProvinceⅡ.ProvinceⅢextends along the western coast of the Malaysian Peninsula,with sediments primarily sourced from the Malaysian Peninsula and the Sunda Shelf,while contributions from Sumatra and the eastern shelf of the Andaman Sea are negligible.River sediments from the Malaysian Peninsula and Sumatra are transported northwestward along their respective coasts by prevailing currents,which also facilitate the transportation of Sunda Shelf sediments within the strait,while sediments from the eastern shelf of the Andaman Sea are delivered to the MS via southward coastal currents during the southwest monsoon period.The southward currents and well-developed eddies potentially impede the northward transport of sediments from the Sunda Shelf and restrict the distribution of Andaman Sea sediments within the strait.This study substantially enhances the understanding of source-to-sink processes in the Indo-Pacific region.