期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Building slippy ion-conduction highways in polymer electrolyte by electrostatic adsorption enabled asymmetric solvation structure 被引量:1
1
作者 Shanshan Lv Guojiang Wen +6 位作者 wenrui cai Sifan Yang Jiarui Yang Yuanming Zhai Xuewei Fu Wei Yang Yu Wang 《Journal of Energy Chemistry》 2025年第4期48-58,共11页
Solvation structures fundamentally control the ion-transport dynamics and mechanical properties of polymer electrolytes.However,there is a lack of strategies to rationally regulate the solvation structures and fundame... Solvation structures fundamentally control the ion-transport dynamics and mechanical properties of polymer electrolytes.However,there is a lack of strategies to rationally regulate the solvation structures and fundamental understanding on how they control the electrochemical performances.Herein,by harnessing the electrostatic adsorption of one-dimensional nanofiller(i.e.,surface-charged halloysite nanotubes,d-HNTs),we successfully fabricate a high-performance polymer nanocomposite electrolyte enabled by strong surface adsorption,referred as adsorption-state polymer electrolyte(ASPE).This ASPE shows fast ion transport(0.71±0.05 mS cm^(-1)at room temperature),high mechanical strength and toughness(10.3±0.05 MPa;15.73 MJ m^(-3)),improved lithium-ion transference number,and long cycle life with lithium metal anode,in comparison with the sample without the d-HNT adsorption effect.To fundamentally understand these high performances,an anion-rich asymmetric solvent structure model is further proposed and evidenced by both experiments and simulation studies.Results show that the electrostatic adsorption among the d-HNT,ionic liquid electrolyte,and polymer chain generates a nano filler-supported fast ion-conduction pathway with asymmetric Li+-coordination microenvironment.Meanwhile,the anion-rich asymmetric solvent structure model of ASPE also generates a fast de-solvation and anion-derived stable solid-electrolyte interphase for lithium metal anode.The high performance and understanding of the mechanism for ASPE provide a promising path to develop advanced polymer electrolytes. 展开更多
关键词 Adsorption state polymer electrolyte Electrostatic adsorption effect Li^(+)-solvation structure Solid-electrolyte-interphase Li^(+)de-solvation
在线阅读 下载PDF
A self-adaptive inorganic in-situ separator by particle crosslinking for nonflammable lithium-ion batteries
2
作者 Jiarui Yang Jiuzhou Liu +12 位作者 wenrui cai Ziyu Zhao Shan Wang Lu He Shanshan Lv Zhiwei Zhu Zhongfeng Ji Guojiang Wen Hua Li Yuanming Zhai Xuewei Fu Wei Yang Yu Wang 《Journal of Energy Chemistry》 2025年第1期469-480,共12页
All-safe liquid-state lithium-ion batteries(ASLS-LIBs) is of great interest as they can potentially combine the safety of all-solid-state batteries with the high performance and low manufacturing cost of traditional l... All-safe liquid-state lithium-ion batteries(ASLS-LIBs) is of great interest as they can potentially combine the safety of all-solid-state batteries with the high performance and low manufacturing cost of traditional liquid-state LIBs. However, the practical success of ASLS-LIBs is bottlenecked by the lack of advanced separator technology that can simultaneously realize high performances in puncturing-tolerability,fire-resistance, and importantly, wetting-capability with non-flammable liquid-electrolytes. Here, we propose a concept of inorganic in-situ separator(IISS) by hybrid-sol physical crosslinking directly onto the electrode surface to address the above challenges. Particularly, the hybrid-sol is designed with silica nanoparticles as the building block and poly(vinylidene difluoride) nanoparticles as the crosslinking agent. The critical factors for controlling the IISS microstructures and properties have been systematically investigated. The advantages of the IISS have been confirmed by its fast wetting with various fireresistant liquid-electrolytes, customizable thickness and porous structures, robust interface with planar or three-dimensional(3D)-structured electrodes, and importantly, unexpected self-adaptability against puncturing. Enabled by the above merits, a fire-resistant ASLS-LIB is successfully assembled and demonstrated with stable electrochemical performance. This sol-crosslinked IISS may open an avenue for the studies on the next-generation separator technology, cell assembling, solid electrolyte processing as well as non-flammable secondary batteries. 展开更多
关键词 Safe liquid-state lithium-ion batteries In-situ separator technology Hybrid-sol physical crosslinking Electrode coating Inorganic nonflammable separator
在线阅读 下载PDF
果胶@壳聚糖复合凝胶微球的制备及释药性能 被引量:3
3
作者 李佳颖 孙琪琪 +5 位作者 樊曦 蔡文睿 潘杨 王增增 何斌 李赛 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2023年第6期42-53,共12页
文中以天然多糖果胶和壳聚糖为原料,采用乳化交联的方法制备了果胶酸锌微球,再通过自组装壳聚糖层并用柠檬酸钠固化,得到了核壳结构的凝胶微球,将药物奥沙拉嗪封装在凝胶微球中,考察了其药物缓释性能。通过红外光谱、扫描电镜、能谱分... 文中以天然多糖果胶和壳聚糖为原料,采用乳化交联的方法制备了果胶酸锌微球,再通过自组装壳聚糖层并用柠檬酸钠固化,得到了核壳结构的凝胶微球,将药物奥沙拉嗪封装在凝胶微球中,考察了其药物缓释性能。通过红外光谱、扫描电镜、能谱分析和荧光显微镜对微球形貌和核壳结构进行了表征。通过单因素变量法对凝胶微球的制备进行了优化,并对微球的药物负载性能及在模拟结肠环境中的释药行为进行了研究。结果表明,果胶@壳聚糖载药微球的最高载药量和包封率分别为29.4%和37.3%,果胶@壳聚糖复合载药微球在pH=7.4的模拟结肠液中,前12 h内的释放量仅为35.29%,72 h后奥沙拉嗪的释放量达到了89.90%,而纯果胶载药微球前12 h的释放量就已经高达78.65%,体现了壳聚糖包封层在药物缓释中的重要性。锌离子在果胶@壳聚糖复合微球和果胶微球中的释放趋势与奥沙拉嗪一致,相比于果胶微球,果胶@壳聚糖复合微球具备良好的缓释性能,可用于治疗结肠炎症疾病。 展开更多
关键词 果胶 壳聚糖 凝胶微球 核壳结构 药物缓释
在线阅读 下载PDF
Preparation of alumina-carbon composites with phloroglucinol-formaldehyde resin and their application in asymmetric hydrogenation 被引量:2
4
作者 wenrui cai Renjie Xiong +4 位作者 Cong Mao Meitian Xiao Yongjun Liu Ranjith Kumar Kankala Xueqin Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第5期1322-1326,共5页
To overcome the shortcomings of single component carrier supported platinum(Pt)-based catalysts,herein,we demonstrate the fabrication of alumina combined mesoporous carbon to prepare a series of alumina-carbon composi... To overcome the shortcomings of single component carrier supported platinum(Pt)-based catalysts,herein,we demonstrate the fabrication of alumina combined mesoporous carbon to prepare a series of alumina-carbon composites and their corresponding Pt-based catalysts.The alumina-carbon composites Al@PhFC are synthesized by using phloroglucinol-formaldehyde resin as carbon source and aluminum acetylacetone as the aluminum source.Further,the effect of alumina content on the properties of the composites is investigated.The composites and catalysts are characterized by using XRD,XPS,N2 sorption,and TEM.The Pt/Al@PhFC-1.8 composite with appropriate amounts of alumina,pore diameter,and moderate Pt nanoparticle size,resulted in 99.5%of conversion efficiency and 77.4%of optical selectivity in the asymmetric hydrogenation of ethyl 2-oxo-4-phenylbutanoate(EOPB).Intere stingly,this composite can be used more than 20 times without a significant decrease in its performance. 展开更多
关键词 Phloroglucinol-formaldehyde resin Alumina-carbon composite Asymmetric hydrogenation Pt nanoparticles
原文传递
The SMAD2/miR-4256/HDAC5/p16^(INK4a) signaling axis contributes to gastric cancer progression 被引量:1
5
作者 MIN WANG HAILIANG ZHAO +14 位作者 WEIWEI CHEN caiQUN BIE JINYING YANG wenrui cai CHUTIAN WU YANFANG CHEN SHUFEN FENG YING SHI YUTING LI HUIJUN TANG LIXIAN ZHONG LILIANGZI GUO SISI CHEN LINJING LONG SHAOHUI TANG 《Oncology Research》 SCIE 2023年第4期515-541,共27页
The dysregulation of exosomal microRNAs(miRNAs)plays a crucial role in the development and progression of cancer.This study investigated the role of a newly identified serum exosomal miRNA miR-4256 in gastric cancer(G... The dysregulation of exosomal microRNAs(miRNAs)plays a crucial role in the development and progression of cancer.This study investigated the role of a newly identified serum exosomal miRNA miR-4256 in gastric cancer(GC)and the underlying mechanisms.The differentially expressed miRNAs were firstly identified in serum exosomes of GC patients and healthy individuals using next-generation sequencing and bioinformatics.Next,the expression of serum exosomal miR-4256 was analyzed in GC cells and GC tissues,and the role of miR-4256 in GC was investigated by in vitro and in vivo experiments.Then,the effect of miR-4256 on its downstream target genes HDAC5/p16^(INK4a) was studied in GC cells,and the underlying mechanisms were evaluated using dual luciferase reporter assay and Chromatin Immunoprecipitation(ChIP).Additionally,the role of the miR-4256/HDAC5/p16^(INK4a) axis in GC was studied using in vitro and in vivo experiments.Finally,the upstream regulators SMAD2/p300 that regulate miR-4256 expression and their role in GC were explored using in vitro experiments.miR-4256 was the most significantly upregulated miRNA and was overexpressed in GC cell lines and GC tissues;in vitro and in vivo results showed that miR-4256 promoted GC growth and progression.Mechanistically,miR-4256 enhanced HDAC5 expression by targeting the promoter of the HDAC5 gene in GC cells,and then restrained the expression of p16^(INK4a) through the epigenetic modulation of HDAC5 at the p16INK4a promoter.Furthermore,miR-4256 overexpression was positively regulated by the SMAD2/p300 complex in GC cells.Our data indicate that miR-4256 functions as an oncogene in GC via the SMAD2/miR-4256/HDAC5/p16^(INK4a) axis,which participates in GC progression and provides novel therapeutic and prognostic biomarkers for GC. 展开更多
关键词 Gastric cancer miR-4256 SMAD2 HDAC5 p16^(INK4a)
暂未订购
Arbitrary skin metallization by pencil-writing inspired solid-ink rubbing for advanced energy storage and harvesting
6
作者 Yonghan Zhou Zhongfeng Ji +5 位作者 wenrui cai Xuewei He Ruiying Bao Xuewei Fu Wei Yang Yu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期592-602,I0013,共12页
The development of a durable metallic coating on diverse substrates is both intriguing and challenging,particularly in the research of metal-conductive materials for applications such as batteries,soft electronics,and... The development of a durable metallic coating on diverse substrates is both intriguing and challenging,particularly in the research of metal-conductive materials for applications such as batteries,soft electronics,and beyond.Herein,by learning from the pencil-writing process,a facile solid-ink rubbing technology(SIR-tech)is invented to address the above challenge.The solid-ink is exampled by rational combination of liquid metal and graphite particles.By harnessing the synergistic effects between rubbing and adhesion,controllable metallic skin is successfully formed onto metals,woods,ceramics,and plastics without limitation in size and shape.Moreover,outperforming pure liquid-metal coating,the composite metallic skin by SIR-tech is very robust due to the self-lamination of graphite nanoplate exfoliated by liquid-metal rubbing.The critical factors controlling the structures-properties of the composite metallic skin have been systematically investigated as well.For applications,the SIR-tech is demonstrated to fabricate high-performance composite current collectors for next-generation batteries without traditional metal foils.Meanwhile,advanced skin-electrodes are further demonstrated for stable triboelectricity generation even under temperature fluctuation from-196 to 120℃.This facile and highly-flexible SIR-tech may work as a powerful platform for the studies on functional coatings by liquid metals and beyond. 展开更多
关键词 Microadhesion guided technology Skin metallization by solid-ink rubbing Liquid metal composites Composite current collector Batteries and triboelectric nanogenerators
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部