Electroactive bacteria(EAB)can transfer electrons to exocellular solid acceptors and have widespread applications in the fields of pollutant degradation,biosynthesis,and hydrogen generation.Traditional EAB screening m...Electroactive bacteria(EAB)can transfer electrons to exocellular solid acceptors and have widespread applications in the fields of pollutant degradation,biosynthesis,and hydrogen generation.Traditional EAB screening methods can precisely measure the bacterial extracellular electron transfer ability,but they suffer from time-consuming and labor-intensive procedures.The chemiluminescence technique is effective for the rapid detection of hemoglobin but has not been applied for EAB screening.Herein,we utilized a chemiluminescent assay to identify EAB through a multiheme c-type cytochrome(c-Cyt)triggered chemiluminescent reaction.The multiheme c-Cyts-triggered chemiluminescence was conveniently determined by taking photographs with commercial smartphones and cloud-based computing.The acquired image signal shows a significant and linear relationship with the bacterial concentration.Measurement results of the chemiluminescence intensity triggered by different bacterial species with the proposed method are strongly associated with those of the microplate reading method(Pearson’s r of 0.9795;P<0.01)and dissimilatory Fe(Ⅲ)reduction method(Pearson’s r of 0.9628;P<0.01).Furthermore,this cloud-based and smartphone-assisted chemiluminescent assay is instrument-free and easy to operate,and results can be obtained within 2 min.The findings demonstrate that the proposed method can effectively detect EAB.Therefore,it will be an alternative approach for EAB screening and can have promising applications in microbiology,environmental science,and bioenergy.展开更多
Cadmium(Cd) contamination in soil pore water is the primary pathway for Cd uptake by food crops,such as rice(Oryza sativa L.),posing significant risks to both food safety and human health.This study presents a novel s...Cadmium(Cd) contamination in soil pore water is the primary pathway for Cd uptake by food crops,such as rice(Oryza sativa L.),posing significant risks to both food safety and human health.This study presents a novel soil pore water metal sensor(SPW-Msensor) for in situ and online monitoring of Cd in soil pore water(Cd_(pw)).The SPW-Msensor integrates an automated sampling device,comprising a Rhizon sampler and a reciprocating series pump with an independent dual plunger drive,along with a portable electrochemical sensor consisting of a screen-printed electrode,flow cell,and portable potentiostat.The SPW-Msensor enables the detection of Cd within a linear range of 50 to 300 ppb while exhibiting high anti-interference capability.Moreover,it demonstrates excellent repeatability(relative standard deviation values(RSDs)<3.6%) across 30 measurements conducted within a 2-h period.The method exhibits good agreement with results obtained using the standard ICP-MS method(RSDs<5%).Additionally,this study establishes a positive correlation between Cd_(pw)detected by the SPW-Msensor and total Cd concentration(Cd_(total)) in the soil with an R^(2) value equal to 0.89.Data acquired from the SPW-Msensor can be utilized for predicting Cd_(total)through partial least squares regression modeling,achieving model quality score(Q^(2)) of 0.69,adjusted R^(2) of 0.9345,and root mean square error(RMSE) of 0.1912.The SPW-Msensor demonstrates real-time monitoring capabilities for assessing Cd levels in acidified soils.This SPW-Msensor offers an efficient approach for in-situ and continuous monitoring of Cd_(pw)that provides valuable insights applicable to environmental and agricultural domains.展开更多
基金supported by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515010173)the One-Hundred Young Talents of the Guangdong University of Technology(Grant No.1143–220413696)。
文摘Electroactive bacteria(EAB)can transfer electrons to exocellular solid acceptors and have widespread applications in the fields of pollutant degradation,biosynthesis,and hydrogen generation.Traditional EAB screening methods can precisely measure the bacterial extracellular electron transfer ability,but they suffer from time-consuming and labor-intensive procedures.The chemiluminescence technique is effective for the rapid detection of hemoglobin but has not been applied for EAB screening.Herein,we utilized a chemiluminescent assay to identify EAB through a multiheme c-type cytochrome(c-Cyt)triggered chemiluminescent reaction.The multiheme c-Cyts-triggered chemiluminescence was conveniently determined by taking photographs with commercial smartphones and cloud-based computing.The acquired image signal shows a significant and linear relationship with the bacterial concentration.Measurement results of the chemiluminescence intensity triggered by different bacterial species with the proposed method are strongly associated with those of the microplate reading method(Pearson’s r of 0.9795;P<0.01)and dissimilatory Fe(Ⅲ)reduction method(Pearson’s r of 0.9628;P<0.01).Furthermore,this cloud-based and smartphone-assisted chemiluminescent assay is instrument-free and easy to operate,and results can be obtained within 2 min.The findings demonstrate that the proposed method can effectively detect EAB.Therefore,it will be an alternative approach for EAB screening and can have promising applications in microbiology,environmental science,and bioenergy.
基金supported by Guangdong Natural Science Foundation-Outstanding Youth Team Project(Grant No.2023B1515040022)the National Natural Science Foundation of China(Grant No.42177270)。
文摘Cadmium(Cd) contamination in soil pore water is the primary pathway for Cd uptake by food crops,such as rice(Oryza sativa L.),posing significant risks to both food safety and human health.This study presents a novel soil pore water metal sensor(SPW-Msensor) for in situ and online monitoring of Cd in soil pore water(Cd_(pw)).The SPW-Msensor integrates an automated sampling device,comprising a Rhizon sampler and a reciprocating series pump with an independent dual plunger drive,along with a portable electrochemical sensor consisting of a screen-printed electrode,flow cell,and portable potentiostat.The SPW-Msensor enables the detection of Cd within a linear range of 50 to 300 ppb while exhibiting high anti-interference capability.Moreover,it demonstrates excellent repeatability(relative standard deviation values(RSDs)<3.6%) across 30 measurements conducted within a 2-h period.The method exhibits good agreement with results obtained using the standard ICP-MS method(RSDs<5%).Additionally,this study establishes a positive correlation between Cd_(pw)detected by the SPW-Msensor and total Cd concentration(Cd_(total)) in the soil with an R^(2) value equal to 0.89.Data acquired from the SPW-Msensor can be utilized for predicting Cd_(total)through partial least squares regression modeling,achieving model quality score(Q^(2)) of 0.69,adjusted R^(2) of 0.9345,and root mean square error(RMSE) of 0.1912.The SPW-Msensor demonstrates real-time monitoring capabilities for assessing Cd levels in acidified soils.This SPW-Msensor offers an efficient approach for in-situ and continuous monitoring of Cd_(pw)that provides valuable insights applicable to environmental and agricultural domains.