Flexible electronics is gaining prominence in modern technology,particularly in flexible displays,wearable electronics,and biomedical applications.Electrodes,as core components of flexible electronics,demand high cond...Flexible electronics is gaining prominence in modern technology,particularly in flexible displays,wearable electronics,and biomedical applications.Electrodes,as core components of flexible electronics,demand high conductivity,flexibility,and stretchability.However,traditional rigid conductive materials often generate interfacial slip with elastic substrates due to mismatched Young's modulus,adversely affecting device performance.Room-temperature liquid metals(LMs),with their high conductivity and stretchability,have emerged as ideal materials for stable and reliable flexible electronic devices.This review discusses the physical,chemical,and biocompatibility properties of LMs.Additionally,LM-based fabrication strategies including patterning and sintering for flexible electrodes are outlined.Applications in implantable medical devices,wearable electronics,and flexible energy storage are illustrated.Finally,the primary challenges and future research directions in LMs are identified.展开更多
基金supported by the National Key Research and Development Program of China(No.2021YFA1401100)the National Natural Science Foundation of China(Nos.61825403 and 61921005)
文摘Flexible electronics is gaining prominence in modern technology,particularly in flexible displays,wearable electronics,and biomedical applications.Electrodes,as core components of flexible electronics,demand high conductivity,flexibility,and stretchability.However,traditional rigid conductive materials often generate interfacial slip with elastic substrates due to mismatched Young's modulus,adversely affecting device performance.Room-temperature liquid metals(LMs),with their high conductivity and stretchability,have emerged as ideal materials for stable and reliable flexible electronic devices.This review discusses the physical,chemical,and biocompatibility properties of LMs.Additionally,LM-based fabrication strategies including patterning and sintering for flexible electrodes are outlined.Applications in implantable medical devices,wearable electronics,and flexible energy storage are illustrated.Finally,the primary challenges and future research directions in LMs are identified.